×

zbMATH — the first resource for mathematics

On stability criteria for neural networks with time-varying delay using Wirtinger-based multiple integral inequality. (English) Zbl 1395.93444
Summary: This paper investigates the problem of delay-dependent stability analysis of neural networks with time-varying delay. Based on Wirtinger-based integral inequality which suggests very closed lower bound of Jensen’s inequality, a new Wirtinger-based multiple integral inequality is presented and it is applied to time-varying delayed neural networks by using reciprocally convex combination approach of high order cases. Three numerical examples are given to describe the less conservatism of the proposed methods.

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
68T05 Learning and adaptive systems in artificial intelligence
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Haykin, S., Neural networks: A comprehensive foundation, (1998), Prentice-Hall Englewood Cliffs, NJ, USA · Zbl 0828.68103
[2] Cichocki, A.; Unbehauen, R., Neural networks for optimization and signal processing, (1993), Wiley Hoboken, NJ · Zbl 0824.68101
[3] Chua, L. O.; Yang, L., Cellular neural networksapplications, IEEE Trans. Circuits Syst., 35, 10, 1273-1290, (1998)
[4] Lee, T. H.; Park, M. J.; Park, J. H.; Kwon, O.-M.; Lee, S.-M., Extended dissipative analysis for neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 25, 10, 1936-1941, (2014)
[5] Zhang, X.; Han, Q., New Lyapunov-krasovskii functionals for global asymptotic stability of delayed neural networks, IEEE Trans. Neural Netw., 20, 3, 533-539, (2009)
[6] Xiao, S.; Zhang, X., New globally asymptotic stability criteria for delayed cellular neural networks, IEEE Trans. Circuits Syst. II, Express Briefs, 56, 8, 659-663, (2009)
[7] Zhang, H.; Yang, F.; Liu, X.; Zhang, Q., Stability analysis for neural networks with time-varying delay based on quadratic convex combination, IEEE Trans. Neural Netw. Learn. Syst., 24, 4, 513-521, (2013)
[8] Zeng, H.-B.; He, Y.; Wu, M.; Zhang, C.-F., Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays, IEEE Trans. Neural Netw., 22, 5, 806-812, (2011)
[9] Ge, H.; Hua, C.; Guan, X., New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach, IEEE Trans. Neural Netw. Learn. Syst., 25, 7, 1378-1383, (2014)
[10] Tian, J.; Zhong, S., Improved delay-dependent stability criterion for neural networks with time-varying delay, Appl. Math. Comput., 217, 24, 10278-10288, (2011) · Zbl 1225.34080
[11] Zhang, H.; Liu, Z.; Huang, G.-B.; Wang, Z., Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay, IEEE Trans. Neural Netw., 21, 1, 91-106, (2010)
[12] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved stability criteria for neural networks with time-varying delay, Phys. Lett. A, 373, 3, 342-348, (2009) · Zbl 1227.92003
[13] Kwon, O. M.; Park, M. J.; Lee, S. M.; Park, J. H.; Cha, E. J., Stability for neural networks with time-varying delays via some new approaches, IEEE Trans. Neural Netw. Learn. Syst., 24, 2, 181-193, (2013)
[14] Zhang, C.-K.; He, Y.; Jiang, L.; Wu, Q. H.; Wu, M., Delay-dependent stability criteria for generalized neural networks with two delay components, IEEE Trans. Neural Netw. Learn. Syst., 25, 1263-1276, (2014)
[15] Zhang, X. M.; Han, Q. L., Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach, Neural Netw., 54, 57-69, (2014) · Zbl 1322.93079
[16] Zeng, H.-B.; Park, J. H.; Zhang, C.-F.; Wang, W., Stability and dissipativity analysis of static neural networks with interval time-varying delay, J. Frankl. Inst., 352, 3, 1284-1295, (2015) · Zbl 1307.93446
[17] Arik, S., An analysis of stability of neutral-type neural systems with constant time delays, J. Frankl. Inst., 351, 11, 4949-4959, (2014) · Zbl 1307.93301
[18] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time-delays, IEEE Trans. Neural Netw., 22, 10, 1566-1575, (2011)
[19] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data, IEEE Trans. Cybern., 43, 6, 1796-1806, (2013)
[20] Park, P., A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Autom. Control, 44, 4, 876-877, (1999) · Zbl 0957.34069
[21] Fang, M.; Park, J. H., A multiple integral approach to stability of neutral time-delay systems, Appl. Math. Comput., 224, 1, 714-718, (2013) · Zbl 1334.34160
[22] Kwon, O. M.; Park, J. H., On improved delay-dependent robust control for uncertain time-delay systems, IEEE Trans. Autom. Control, 49, 11, 1991-1995, (2004) · Zbl 1365.93370
[23] Liu, X. G.; Wu, M.; Martin, R.; Tang, M. L., Stability analysis for neutral systems with mixed delays, J. Comput. Appl. Math., 202, 2, 478-497, (2007) · Zbl 1120.34057
[24] He, Y.; Liu, G. P.; Rees, D.; Wu, M., Stability analysis for neural networks with time-varying interval delay, IEEE Trans. Neural Netw., 18, 6, 1850-1854, (2007)
[25] Park, P.; Ko, J. W., Stability and robust stability for systems with a time-varying delay, Automatica, 43, 10, 1855-1858, (2007) · Zbl 1120.93043
[26] Park, P. G.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238, (2011) · Zbl 1209.93076
[27] Gu, K., A further refinement of discretized Lyapunov functional method for the stability of time-delay systems, Int. J. Control, 74, 10, 967-976, (2001) · Zbl 1015.93053
[28] Rakkiyappan, R.; Zhu, Q.; Chandrasekar, A., Stability of stochastic neural networks of neutral type with Markovian jumping parametersa delay-fractioning approach, J. Frankl. Inst., 351, 3, 1553-1570, (2014) · Zbl 1395.93570
[29] A. Seuret, F. Gouaisbaut, On the use of the Wirtinger’s inequalities for time-delay systems, in: Proceedings of the IFAC Workshop on Time Delay Systems, vol. 12, 2012.
[30] A. Seuret, F. Gouaisbaut, Jensen’s and Wirtinger’s inequalities for time-delay systems, in: Proceedings of the IFAC Workshop on Time Delay Systems, vol. 13, 2013. · Zbl 1364.93740
[31] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequalityapplication to time-delay systems, Automatica, 49, 9, 2860-2866, (2013) · Zbl 1364.93740
[32] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality, J. Frankl. Inst., 351, 12, 5386-5398, (2014) · Zbl 1393.93104
[33] Nam, Phan T.; Pathirana, Pubudu N.; Trinh, H., Discrete Wirtinger-based inequality and its application, J. Frankl. Inst., 352, 5, 1893-1905, (2015) · Zbl 1395.93448
[34] Shi, K.; Zhu, H.; Zhong, S.; Zeng, Y.; Zhang, Y., New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach, J. Frankl. Inst., 352, 1, 155-176, (2015) · Zbl 1307.93309
[35] Ji, M.-D.; He, Y.; Zhang, C.-K.; Wu, M., Novel stability criteria for recurrent neural networks with time-varying delay, Neurocomputing, 138, 383-391, (2014)
[36] Xia, J.; Park, J. H.; Zeng, H., Improved delay-dependent robust stability analysis for neutral-type uncertain neural networks with Markovian jumping parameters and time-varying delays, Neurocomputing, 149, 1198-1205, (2015)
[37] Shao, L.; Huang, H.; Zhao, H.; Huang, T., Filter design of delayed static neural networks with Markovian jumping parameters, Neurocomputing, 153, 4, 126-132, (2015)
[38] T.H. Lee, J.H. Park, H.Y. Jung, O.M. Kwon, S.M. Lee, Improved results on stability of time-delay systems using Wirtinger-based inequality, in: Proceedings of the 19th IFAC World Congress, 2014.
[39] A. Seuret, F. Gouaisbaut, Complete quadratic Lyapunov functionals using Bessel-Legendre inequality, in: Proceedings of European Control Conference, 2014. · Zbl 1276.93070
[40] Park, M. J.; Kwon, O. M.; Park, J. H.; Lee, S. M.; Cha, E. J., Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, 55, 204-208, (2015) · Zbl 1377.93123
[41] Skelton, R. E.; Iwasaki, T.; Grigoradis, K. M., A unified algebraic approach to linear control design, (1997), Taylor and Francis New York
[42] Lee, W. I.; Park, P. G., Second-order reciprocally convex approach to stability of systems with interval time-varying delays, Appl. Math. Comput., 229, 245-253, (2014) · Zbl 1364.34103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.