×

zbMATH — the first resource for mathematics

Output consensus of heterogeneous linear systems with quantized information. (English) Zbl 1395.93036
Summary: In this paper, we design two distributed output consensus controllers for heterogeneous linear systems based on internal model principle and then study the quantization effect on the controllers when uniform quantizers are used in the communication channels. The first controller considers the general situation when the internal model state matrix of the system may be unstable and the communication graphs are strongly connected directed graphs. We prove that the bound of the consensus error is proportional to the quantizer parameter with a coefficient related to the size of the network and the property of the communication graphs. The second controller considers the situation when the internal model state matrix is neutrally stable and the communication graphs are undirected connected graphs. In this case, we derive a better bound of the consensus error which is proportional to the quantizer parameter and the coefficient is unrelated to the size of the network when the linear systems are homogeneous. Simulation examples are provided to illustrate the theoretical results.

MSC:
93A14 Decentralized systems
93B51 Design techniques (robust design, computer-aided design, etc.)
93C15 Control/observation systems governed by ordinary differential equations
93B52 Feedback control
93C05 Linear systems in control theory
05C20 Directed graphs (digraphs), tournaments
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[2] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[3] Moreau, L., Stability of multiagent systems with time-dependent communication links, IEEE Trans. Autom. Control, 50, 2, 169-182, (2005) · Zbl 1365.93268
[4] Ren, W.; Beard, R. W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[5] Ren, W., On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Control, 53, 6, 1503-1509, (2008) · Zbl 1367.93567
[6] Tuna, S. E., Synchronizing linear systems via partial-state coupling, Automatica, 44, 8, 2179-2184, (2008) · Zbl 1283.93028
[7] Scardovi, L.; Sepulchre, R., Synchronization in networks of identical linear systems, Automatica, 45, 11, 2557-2562, (2009) · Zbl 1183.93054
[8] Seo, J. H.; Shim, H.; Back, J., Consensus of high-order linear systems using dynamic output feedback compensatorlow gain approach, Automatica, 45, 11, 2659-2664, (2009) · Zbl 1180.93005
[9] Wieland, P.; Sepulchre, R.; Allgöwer, F., An internal model principle is necessary and sufficient for linear output synchronization, Automatica, 47, 5, 1068-1074, (2011) · Zbl 1233.93011
[10] Kashyap, A.; Başar, T.; Srikant, R., Quantized consensus, Automatica, 43, 7, 1192-1203, (2007) · Zbl 1123.93090
[11] Carli, R.; Fagnani, F.; Speranzon, A.; Zampieri, S., Communication constraints in the average consensus problem, Automatica, 44, 3, 671-684, (2008) · Zbl 1283.93014
[12] Frasca, P.; Carli, R.; Fagnani, F.; Zampieri, S., Average consensus on networks with quantized communication, Int. J. Robust Nonlinear Control, 19, 16, 1787-1816, (2009) · Zbl 1298.93314
[13] Nedic, A.; Olshevsky, A.; Ozdaglar, A.; Tsitsiklis, J. N., On distributed averaging algorithms and quantization effects, IEEE Trans. Autom. Control, 54, 11, 2506-2517, (2009) · Zbl 1367.93405
[14] Garulli, A.; Giannitrapani, A., Analysis of consensus protocols with bounded measurement errors, Syst. Control Lett., 60, 1, 44-52, (2011) · Zbl 1207.93004
[15] Aysal, T. C.; Coates, M. J.; Rabbat, M. G., Distributed average consensus with dithered quantization, IEEE Trans. Signal Process., 56, 10, 4905-4918, (2008) · Zbl 1390.94083
[16] Li, T.; Fu, M.; Xie, L.; Zhang, J.-F., Distributed consensus with limited communication data rate, IEEE Trans. Autom. Control, 56, 2, 279-292, (2011) · Zbl 1368.93346
[17] Dimarogonas, D. V.; Johansson, K. H., Stability analysis for multi-agent systems using the incidence matrixquantized communication and formation control, Automatica, 46, 4, 695-700, (2010) · Zbl 1193.93059
[18] Ceragioli, F.; De Persis, C.; Frasca, P., Discontinuities and hysteresis in quantized average consensus, Automatica, 47, 9, 1916-1928, (2011) · Zbl 1227.93004
[19] Hui, Q., Quantised near-consensus via quantised communication links, Int. J. Control, 84, 5, 931-946, (2011) · Zbl 1245.93010
[20] Liu, H.; Cao, M.; De Persis, C., Quantization effects on synchronized motion of teams of mobile agents with second-order dynamics, Syst. Control Lett., 61, 12, 1157-1167, (2012) · Zbl 1255.93011
[21] Frasca, P., Continuous-time quantized consensusconvergence of krasovskii solutions, Syst. Control Lett., 61, 2, 273-278, (2012) · Zbl 1238.93008
[22] Persis, C. D.; Jayawardhana, B., Coordination of passive systems under quantized measurements, SIAM J. Control Optim., 50, 6, 3155-3177, (2012) · Zbl 1258.93003
[23] Zhang, H.; Lewis, F. L.; Qu, Z., Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Trans. Ind. Electron., 59, 7, 3026-3041, (2012)
[24] Yu, W.; Chen, G.; Cao, M.; Kurths, J., Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics, IEEE Trans. Syst. Man Cybern. Part BCybern., 40, 3, 881-891, (2010)
[25] Cortes, J., Discontinuous dynamical systems, IEEE Control Syst., 28, 3, 36-73, (2008) · Zbl 1395.34023
[26] F.M. Ceragioli, Discontinuous ordinary differential equations and stabilization (Ph.D. thesis), Univ. Firenze, Italy, 1999. · Zbl 1053.93510
[27] Kim, H.; Shim, H.; Seo, J. H., Output consensus of heterogeneous uncertain linear multi-agent systems, IEEE Trans. Autom. Control, 56, 1, 200-206, (2011) · Zbl 1368.93378
[28] Grip, H. F.; Yang, T.; Saberi, A.; Stoorvogel, A. A., Output synchronization for heterogeneous networks of non-introspective agents, Automatica, 48, 2444-2453, (2012) · Zbl 1271.93009
[29] J. Zhao, D.J. Hill, T. Liu, Passivity-based output synchronization of dynamical networks with non-identical nodes, in: 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, pp. 7351-7356.
[30] Lunze, J., Synchronization of heterogeneous agents, IEEE Trans. Autom. Control, 57, 11, 2885-2890, (2012) · Zbl 1369.93037
[31] Paden, B.; Sastry, S., A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators, IEEE Trans. Circuits Syst., 34, 1, 73-82, (1987) · Zbl 0632.34005
[32] Khalil, H. K., Nonlinear systems, (2002), Prentice Hall NJ
[33] Su, Y.; Huang, J., Stability of a class of linear switching systems with applications to two consensus problems, IEEE Trans. Autom. Control, 57, 6, 1420-1430, (2012) · Zbl 1369.93387
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.