zbMATH — the first resource for mathematics

Output formation-containment analysis and design for general linear time-invariant multi-agent systems. (English) Zbl 1395.93012
Summary: Output formation-containment control problems for general linear time-invariant multi-agent systems with directed topologies are dealt with. Output formation-containment means that the outputs of leaders achieve the predefined formation, and at the same time the outputs of followers converge to the convex hull formed by the outputs of leaders. Firstly, static output protocols are presented for leaders and followers respectively. Then output formation-containment problems of multi-agent systems are transformed into asymptotic stability problems. Sufficient conditions with less computation complexity are proposed for multi-agent systems to achieve the output formation-containment. An explicit expression for the time-varying output formation reference function is derived to describe the macroscopic movement of the whole output formation-containment. Explicit expressions to describe the relationship among the outputs of followers, the time-varying output formation for the leaders and the output formation reference are derived. It is proven that the outputs of followers not only converge to the convex hull formed by those of leaders but also achieve certain time-varying formation specified by the convex combination of the desired output formation for the leaders. Moreover, an approach to determine the gain matrices in the protocols is given for multi-agent systems to achieve the output formation-containment. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.

93A13 Hierarchical systems
68T42 Agent technology and artificial intelligence
93C05 Linear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93D21 Adaptive or robust stabilization
Full Text: DOI
[1] Fax, J. A.; Murry, R. M., Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49, 9, 1465-1476, (2004) · Zbl 1365.90056
[2] Liu, L.; Shan, J. J., Distributed formation control of networked Euler-Lagrange systems with fault diagnosis, J. Frankl. Inst., 352, 3, 952-973, (2015) · Zbl 1307.93032
[3] X.W. Dong, Y. Zhou, Z. Ren, Y.S. Zhong, Time-varying formation control for unmanned aerial vehicles with switching interaction topologies, Control Eng. Pract. 46 (2016) 26-36.
[4] Dong, X. W.; Yu, B. C.; Shi, Z. Y.; Zhong, Y. S., Time-varying formation control for unmanned aerial vehiclestheories and applications, IEEE Trans. Control Syst. Technol., 23, 1, 340-348, (2015)
[5] Guo, G.; Zhao, Y.; Yang, G., Cooperation of multiple mobile sensors with minimum energy cost for mobility and communication, Inf. Sci., 254, 1, 69-82, (2014)
[6] Franceschelli, M.; Giua, A.; Seatzu, C., Distributed averaging in sensor networks based on broadcast gossip algorithms, IEEE Sens. J., 11, 3, 808-817, (2011)
[7] Ren, W.; Beard, R. W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control, 50, 4, 655-661, (2005) · Zbl 1365.93302
[8] Dimarogonas, D. V.; Johansson, K. H., Stability analysis for multi-agent systems using the incidence matrixquantized communication and formation control, Automatica, 46, 4, 695-700, (2010) · Zbl 1193.93059
[9] Fu, J. J.; Wang, J. Z., Output consensus of heterogeneous linear systems with quantized information, J. Frankl. Inst., 351, 3, 1400-1418, (2014) · Zbl 1395.93036
[10] Lin, P.; Dai, M. X.; Song, Y. D., Consensus stability of a class of second-order multi-agent systems with nonuniform time-delays, J. Frankl. Inst., 351, 3, 1571-1576, (2014) · Zbl 1395.93054
[11] Djaidja, S.; Wu, Q. H.; Fang, H., Consensus of double-integrator multi-agent systems without relative state derivatives under communication noises and directed topologies, J. Frankl. Inst., 352, 3, 897-912, (2015) · Zbl 1307.93373
[12] Xi, J. X.; Cai, N.; Zhong, Y. S., Consensus problems for high-order linear time-invariant swarm systems, Physica A, 389, 24, 5619-5627, (2010)
[13] Zhang, B.; Jia, Y. M., Algebraic criteria for consensus problems of general linear multi-agent systems with switching topology, J. Frankl. Inst., 352, 4, 1521-1540, (2015) · Zbl 1395.93029
[14] Xie, D. S.; Xu, S. Y.; Chu, Y. M.; Zou, Y., Event-triggered average consensus for multi-agent systems with nonlinear dynamics and switching topology, J. Frankl. Inst., 352, 3, 1080-1098, (2015) · Zbl 1307.93258
[15] Zhang, W. B.; Tang, Y.; Miao, Q. Y.; Du, W., Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects, IEEE Trans. Neural Netw. Learn. Syst., 24, 8, 1316-1326, (2013)
[16] Li, H. P.; Yan, W. S., Receding horizon control based consensus scheme in general linear multi-agent systems, Automatica, 56, 12-18, (2015) · Zbl 1323.93009
[17] Huang, C.; Ho, D. W.C.; Lu, J. Q.; Kurths, J., Pinning synchronization in T-S fuzzy complex networks with partial and discrete-time couplings, IEEE Trans. Fuzzy Syst., 23, 4, 1274-1285, (2015)
[18] Cao, Y. C.; Ren, W.; Li, Y., Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication, Automatica, 45, 4, 1299-1305, (2009) · Zbl 1162.93004
[19] Hong, Y. G.; Chen, G. R.; Bushnell, L., Distributed observers design for leader-following control of multi-agent networks, Automatica, 44, 3, 850-864, (2008) · Zbl 1283.93019
[20] Ni, W.; Cheng, D. Z., Leader-following consensus of multi-agent systems under fixed and switching topologies, Syst. Control Lett., 59, 3-4, 209-217, (2010) · Zbl 1223.93006
[21] Li, Z. K.; Liu, X. D.; Ren, W.; Xie, L. H., Distributed tracking control for linear multiagent systems with a leader of bounded unknown input, IEEE Trans. Autom. Control, 58, 2, 518-523, (2013) · Zbl 1369.93306
[22] Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A., Containment control in mobile networks, IEEE Trans. Autom. Control, 53, 8, 1972-1975, (2008) · Zbl 1367.93398
[23] Meng, Z. Y.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[24] Notarstefano, G.; Egerstedt, M.; Haque, M., Containment in leader-follower networks with switching communication topologies, Automatica, 47, 4, 1035-1040, (2011) · Zbl 1233.93009
[25] Liu, H. Y.; Xie, G. M.; Wang, L., Necessary and sufficient conditions for containment control of networked multi-agent systems, Automatica, 48, 7, 1415-1422, (2012) · Zbl 1246.93008
[26] Liu, K. E.; Xie, G. M.; Wang, L., Containment control for second-order multi-agent systems with time-varying delays, Syst. Control Lett., 67, 1, 24-31, (2014) · Zbl 1288.93004
[27] Li, Z. K.; Ren, W.; Liu, X. D.; Fu, M. Y., Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders, Int. J. Robust Nonlinear Control, 23, 4, 534-547, (2013) · Zbl 1284.93019
[28] Dong, X. W.; Xi, J. X.; Lu, G.; Zhong, Y. S., Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays, Int. J. Robust Nonlinear Control, 24, 7, 1189-1204, (2014) · Zbl 1287.93006
[29] Liu, H. Y.; Xie, G. M.; Wang, L., Containment of linear multi-agent systems under general interaction topologies, Syst. Control Lett., 61, 4, 528-534, (2012) · Zbl 1250.93010
[30] Dong, X. W.; Meng, F. L.; Shi, Z. Y.; Lu, G.; Zhong, Y. S., Output containment control for swarm systems with general linear dynamicsa dynamic output feedback approach, Syst. Control Lett., 71, 1, 31-37, (2014) · Zbl 1296.93004
[31] Kan, Z.; Klotz, J. R.; Pasiliao, E. L.; Dixon, W. E., Containment control for a social network with state-dependent connectivity, Automatica, 56, 86-92, (2015) · Zbl 1323.93015
[32] Liu, H. Y.; Cheng, L.; Tan, M.; Hou, Z. G., Containment control of continuous-time linear multi-agent systems with aperiodic sampling, Automatica, 57, 78-84, (2015) · Zbl 1330.93113
[33] Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A.; Ji, M., Laplacian sheepa hybrid, stop-go policy for leader-based containment control, Hybrid Syst.: Comput. Control, 212-226, (2006) · Zbl 1178.68595
[34] D.V. Dimarogonas, M. Egerstedt, K.J. Kyriakopoulos, A leader-based containment control strategy for multiple unicycles, in: Proceedings of 45th IEEE Conference on Decision and Control, 2006, pp. 5968-5973.
[35] H.Y. Liu, L. Cheng, M. Tan, Z.G. Hou, Z.Q. Cao, M. Wang, Containment control with multiple interacting leaders under switching topologies, in: Proceedings of 32nd Chinese Control Conference, 2013, pp. 7093-7098.
[36] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Formation-containment analysis and design for high-order linear time-invariant swarm systems, Int. J. Robust Nonlinear Control 25 (17) (2015) 3439-3456. · Zbl 1338.93017
[37] Dong, X. W.; Li, Q. D.; Ren, Z.; Zhong, Y. S., Formation-containment control for high-order linear time-invariant multi-agent systems with time delays, J. Frankl. Inst., 352, 9, 3564-3584, (2015) · Zbl 1395.93011
[38] Godsil, C.; Royal, G., Algebraic graph theory, (2001), Springer-Verlag New York
[39] Kailath, T., Linear systems, (1980), Prentice-Hall New Jersey · Zbl 0458.93025
[40] Davison, E.; Wang, S., On pole assignment in linear multivariable systems using output feedback, IEEE Trans. Autom. Control, 20, 4, 516-518, (1975) · Zbl 0309.93016
[41] Kimura, H., Pole assignment by gain output feedback, IEEE Trans. Autom. Control, 20, 4, 509-516, (1975) · Zbl 0309.93017
[42] Xi, J. X.; Shi, Z. Y.; Zhong, Y. S., Consensus analysis and design for high-order linear swarm systems with time-varying delays, Physica A, 390, 23-24, 4114-4123, (2011)
[43] He, Y.; Wang, Q. G., An improved ILMI method for static output feedback control with application to multivariable PID control, IEEE Trans. Autom. Control, 51, 10, 1678-1683, (2006) · Zbl 1366.93218
[44] Ghaoui, L. El.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Trans. Autom. Control, 42, 8, 1171-1176, (1997) · Zbl 0887.93017
[45] Cao, Y. Y.; Sun, Y. X.; Lam, J., Simultaneous stabilization via static output feedback and state feedback, IEEE Trans. Autom. Control, 44, 5, 1277-1282, (1999) · Zbl 0955.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.