zbMATH — the first resource for mathematics

Formation-containment control for high-order linear time-invariant multi-agent systems with time delays. (English) Zbl 1395.93011
Summary: Formation-containment analysis and design problems for time-delayed high-order linear time-invariant multi-agent systems with directed interaction topologies are studied. Firstly, protocols with time delays are presented for leaders and followers, where the formation for leaders can be time-varying. Then formation-containment problems for time-delayed multi-agent systems are transformed into asymptotic stability problems of time-delayed systems. Sufficient conditions for multi-agent systems to achieve formation-containment are proposed, which include eight linear matrix inequalities independent of the number of leaders and followers. Furthermore, an explicit expression of the formation reference function for leaders is derived, where the motion modes of formation reference can be specified. An approach to determine the gain matrices in the protocols is given using the method of changing variables. Finally, numerical simulations are provided to demonstrate theoretical results.

93A13 Hierarchical systems
68T42 Agent technology and artificial intelligence
93C85 Automated systems (robots, etc.) in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93C05 Linear systems in control theory
93D20 Asymptotic stability in control theory
93B17 Transformations
Full Text: DOI
[1] Abdessameud, A.; Tayebi, A., Attitude synchronization of a group of spacecraft without velocity measurements, IEEE Trans. Autom. Control, 54, 11, 2642-2648, (2009) · Zbl 1367.93413
[2] Du, H. B.; Li, S. H.; Qian, C. J., Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Trans. Autom. Control, 56, 11, 2711-2717, (2011) · Zbl 1368.70036
[3] Zhao, W. H.; Go, T. H., Quadcopter formation flight control combining MPC and robust feedback linearization, J. Frankl. Inst., 351, 3, 1335-1355, (2014) · Zbl 1395.93031
[4] Dong, X. W.; Yu, B. C.; Shi, Z. Y.; Zhong, Y. S., Time-varying formation control for unmanned aerial vehicles: theories and applications, IEEE Trans. Control Syst. Technol., 23, 1, 340-348, (2015)
[5] Yu, W. W.; Chen, G. R.; Wang, Z. D.; Yang, W., Distributed consensus filtering in sensor networks, IEEE Trans. Syst. Man Cybern. Part B-Cybern., 39, 6, 1568-1577, (2009)
[6] Kar, S.; Moura, J. M.F., Distributed consensus algorithms in sensor networks with imperfect communicationlink failures and channel noise, IEEE Trans. Signal Process., 57, 1, 355-369, (2009) · Zbl 1391.94263
[7] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[8] Ren, W.; Beard, R. W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[9] Yu, W. W.; Chen, G. R.; Cao, M., Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46, 6, 1089-1095, (2010) · Zbl 1192.93019
[10] Lin, P.; Dai, M. X.; Song, Y. D., Consensus stability of a class of second-order multi-agent systems with nonuniform time-delays, J. Frankl. Inst., 351, 3, 1571-1576, (2014) · Zbl 1395.93054
[11] Dong, X. W.; Xi, J. X.; Shi, Z. Y.; Zhong, Y. S., Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances, Int. J. Syst. Sci., 44, 10, 1843-1856, (2013) · Zbl 1307.93044
[12] Fu, J. J.; Wang, J. Z., Output consensus of heterogeneous linear systems with quantized information, J. Frankl. Inst., 351, 3, 1400-1418, (2014) · Zbl 1395.93036
[13] Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A., Containment control in mobile networks, IEEE Trans. Autom. Control, 53, 8, 1972-1975, (2008) · Zbl 1367.93398
[14] Meng, Z. Y.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[15] Notarstefano, G.; Egerstedt, M.; Haque, M., Containment in leader-follower networks with switching communication topologies, Automatica, 47, 5, 1035-1040, (2011) · Zbl 1233.93009
[16] Cao, Y. C.; Stuart, D.; Ren, W.; Meng, Z. Y., Distributed containment control for multiple autonomous vehicles with double-integrator dynamicsalgorithms and experiments, IEEE Trans. Control Syst. Technol., 19, 4, 929-938, (2011)
[17] Liu, H. Y.; Xie, G. M.; Wang, L., Necessary and sufficient conditions for containment control of networked multi-agent systems, Automatica, 48, 7, 1415-1422, (2012) · Zbl 1246.93008
[18] Li, Z. K.; Ren, W.; Liu, X. D.; Fu, M. Y., Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders, Int. J. Robust Nonlinear Control, 23, 5, 534-547, (2013) · Zbl 1284.93019
[19] Dong, X. W.; Xi, J. X.; Lu, G.; Zhong, Y. S., Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays, Int. J. Robust Nonlinear Control, 24, 7, 1189-1204, (2014) · Zbl 1287.93006
[20] P. Wang, Y.M. Jia, Robust \(H_\infty\) containment control for uncertain multi-agent systems with inherent nonlinear dynamics, Int. J. Syst. Sci., in press, http://dx.doi.org/10.1080/00207721.2014.911391. · Zbl 1333.93102
[21] Wang, X. H.; Hong, Y. G.; Ji, H. B., Adaptive multi-agent containment control with multiple parametric uncertain leaders, Automatica, 50, 9, 2366-2372, (2014) · Zbl 1297.93106
[22] Ren, W., Consensus strategies for cooperative control of vehicle formations, IET Control Theory Appl., 1, 2, 505-512, (2007)
[23] Porfiri, M.; Roberson, D. G.; Stilwell, D. J., Tracking and formation control of multiple autonomous agentsa two-level consensus approach, Automatica, 43, 8, 1318-1328, (2007) · Zbl 1130.93349
[24] Ma, C. Q.; Zhang, J. F., On formability of linear continuous-time multi-agent systems, J. Syst. Sci. Complex., 25, 1, 13-29, (2012) · Zbl 1251.93013
[25] Dong, X. W.; Xi, J. X.; Lu, G.; Zhong, Y. S., Formation control for high-order linear time-invariant multiagent systems with time delays, IEEE Trans. Control Netw. Syst., 1, 3, 232-240, (2014) · Zbl 1370.93180
[26] Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A.; Ji, M., Laplacian sheepa hybrid, stop-go policy for leader-based containment control, Hybrid Syst.: Comput. Control, 212-226, (2006) · Zbl 1178.68595
[27] D.V. Dimarogonas, M. Egerstedt, K.J. Kyriakopoulos, A leader-based containment control strategy for multiple unicycles, in: Proceedings of 45th IEEE Conference on Decision and Control, 2006, pp. 5968-5973.
[28] H.Y. Liu, L. Cheng, M. Tan, Z.G. Hou, Z.Q. Cao, M. Wang, Containment control with multiple interacting leaders under switching topologies, in: Proceedings of 32nd Chinese Control Conference, 2013, pp. 7093-7098.
[29] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Formation-containment analysis and design for high-order linear time-invariant swarm systems, Int. J. Robust Nonlinear Control, in press, http://dx.doi.org/10.1002/rnc.3274 · Zbl 1338.93017
[30] Qiu, J. B.; Feng, G.; Gao, H. J., Fuzzy-model-based piecewise \(H_\infty\) static-output-feedback controller design for networked nonlinear systems, IEEE Trans. Fuzzy Syst., 18, 5, 919-934, (2010)
[31] Qiu, J. B.; Feng, G.; Gao, H. J., Observer-based piecewise affine output feedback controller synthesis of continuous-time TCS fuzzy affine dynamic systems using quantized measurements, IEEE Trans. Fuzzy Syst., 20, 6, 1046-1062, (2012)
[32] Qiu, J. B.; Feng, G.; Yang, J., A new design of delay-dependent robust \(H_\infty\) filtering for discrete-time T-S fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 17, 5, 1044-1058, (2009)
[33] Qiu, J. B.; Wei, Y. L.; Karimi, H. R., New approach to delay-dependent \(H_\infty\) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions, J. Frankl. Inst., 352, 1, 189-215, (2015) · Zbl 1307.93444
[34] Godsil, C.; Royle, G., Algebraic Graph Theory, (2001), Springer-Verlag New York · Zbl 0968.05002
[35] Xi, J. X.; Shi, Z. Y.; Zhong, Y. S., Consensus analysis and design for high-order linear swarm systems with time-varying delays, Physica A, 390, 23-24, 4114-4123, (2001)
[36] Zhang, X. M.; Wu, M.; She, J. H.; He, Y., Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica, 41, 8, 1405-1412, (2005) · Zbl 1093.93024
[37] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004
[38] Li, Z. K.; Ren, W.; Liu, X. D.; Xie, L. H., Distributed consensus of linear multi-agent systems with adaptive dynamic protocols, Automatica, 49, 7, 1986-1995, (2013) · Zbl 1364.93023
[39] J. Mei, W. Ren, J. Chen, B.D.O. Anderson, Consensus of linear multi-agent systems with fully distributed control gains under a general directed graph, in: Proceedings of 53rd IEEE Conference on Decision and Control, 2014, pp. 2993-2998.
[40] Zhou, B.; Lin, Z. L., Consensus of high-order multi-agent systems with large input and communication delays, Automatica, 50, 2, 452-464, (2014) · Zbl 1364.93044
[41] Zhou, B.; Xu, C. C.; Duan, G. R., Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Trans. Autom. Control, 59, 8, 2264-2270, (2014) · Zbl 1360.93139
[42] Liu, T. F.; Jiang, Z. P., Distributed formation control of nonholonomic mobile robots without global position measurements, Automatica, 49, 2, 592-600, (2013) · Zbl 1259.93009
[43] P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox for Use with Matlab, MathWorks, Natick, MA, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.