×

Tsallis non-extensive statistics and solar wind plasma complexity. (English) Zbl 1395.82238


MSC:

82D10 Statistical mechanics of plasmas
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Burlaga, L. F., MHD processes in the outer heliosphere, Space Sci. Rev., 39, 3-4, 255-316, (1984)
[2] Burlaga, L. F., Multifractal structure of the interplanetary magnetic field: voyager 2 observations near 25AU, 1987-1988, Geophys. Res. Lett., 18, 69-72, (1991)
[3] Burlaga, L. F., Intermittent turbulence in the solar wind, J. Geophys. Res., 96, A4, 5847-5851, (1991)
[4] Burlaga, L. F., Multifractal structure of speed fluctuations in recurrent streams at 1AU and near 6AU, Geophys. Res. Lett., 18, 1651-1654, (1991)
[5] Burlaga, L. F., Multifractal structure of the magnetic field and plasma in recurrent streams at 1 AU, J. Geophys. Res., 97, A4, 4283-4293, (1992)
[6] Burlaga, L. F., Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum, J. Geophys. Res., 98, A10, 17467-17473, (1993)
[7] Burlaga, L. F.; Forman, M. A., Large-scale speed fluctuations at 1 AU on scales from 1 hour to \(\approx\) 1 year: 1999 and 1995, J. Geophys. Res., 107, A11, 1403, (2002)
[8] G.P. Pavlos, et al. Chaotic dynamics in astrophysics and space physics, in: 1st General Conference—Balkan Physical Union, 1991.
[9] Pavlos, G. P., Evidence for chaotic dynamics in the outer solar plasma and the Earth magnetosphere, (Chaotic Dynamics: Theory and Practice, NATO ASI Series B: Physics, vol. 298, (1992)), 327-339
[10] Pavlos, G. P., Evidence for strange attractor structures in space plasmas, Ann. Geophys., 10, 5, 309-322, (1992)
[11] Marsch, E.; Liu, S., Structure functions and intermittency of velocity fluctuations in the inner solar wind, Ann. Geophys., 11, 227-238, (1993)
[12] Tu, C.-Y.; Marsch, E.; Rosenbauer, H., An extended structure function model and its application to the analysis of solar wind intermittency properties, Ann. Geophys., 14, 270-285, (1996)
[13] Carbone, V.; Veltri, P.; Bruno, R., Solar wind low-frequency magneto hydrodynamic turbulence: extended self-similarity and scaling laws, Nonlinear Processes Geophys., 3, 247-261, (1996)
[14] Horbury, T. A.; Balogh, A., Structure function measurements of the intermittent turbulent cascade, Nonlinear Processes Geophys., 4, 185-199, (1997)
[15] Riazantseva, M. O., Intermittency of solar wind ion flux and magnetic field fluctuations in the wide frequency region from 10-5 up to 1 hz and the influence of sudden changes of ion flux, (Maksimovic, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Pantellini, F., Twelfth International Solar Wind Conference, (2010), AIP)
[16] Carbone, V., Cascade model for intermittency in fully developed magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 10, 1546-1548, (1993)
[17] Carbone, V., Scale similarity of the velocity structure functions in fully developed magnetohydrodynamic turbulence, Phys. Rev. E, 50, 2, R671-R674, (1994)
[18] Buti, B., Chaos and turbulence in solar wind, Astrophys. Space Sci., 243, 1, 33-41, (1996)
[19] Marsch, E.; Tu, C. Y., Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind, Nonlinear Processes Geophys., 4, 2, 101-124, (1997)
[20] Macek, W. M., Modeling multifractality of the solar wind, Space Sci. Rev., 122, 329-337, (2006)
[21] Macek, W. M., Multifractality and intermittency in the solar wind, Nonlinear Processes Geophys., 14, 695-700, (2007)
[22] Macek, W. M., Chaos and multifractals in the solar wind, Adv. Space Res., 46, 526-531, (2010)
[23] Macek, W. M., Observation of the multifractal spectrum in the heliosphere and the heliosheath by voyager 1 and 2, J. Geophys. Res., 117, A12101, (2012)
[24] Strumik, M.; Macek, W. M., Testing for Markovian character and modeling of intermittency in solar wind turbulence, Phys. Rev. E, 78, 026414, (2008)
[25] Sorriso, V., Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophys. Res. Lett., 26, 13, 1801-1804, (1999)
[26] Sorriso, V., Observation of inertial energy cascade in interplanetary space plasma, Phys. Rev. Lett., 99, 115001, (2007)
[27] Marino, R., Heating a solar wind by a magnetohydrodynamic turbulent energy cascade, Astron. J., 677, L71-L74, (2008)
[28] Riazantseva, M. O.; Zastenker, G. N., Intermittency of solar wind density fluctuations and its relation to sharp density changes, Cosmic Res., 46, 1, 1-7, (2008)
[29] Karakatsanis, L. P.; Pavlos, G. P., Self organized criticality and chaos into the solar activity, Nonlinear Phenom. Complex Syst., 11, 2, 280-284, (2008)
[30] Karakatsanis, L. P.; Pavlos, G. P.; Iliopoulos, A. C.; Tsoutsouras, V. G.; Pavlos, E. G., Evidence for coexistence of SOC, intermittent turbulence and low-dimensional chaos processes solar flare dynamics, (Modern Challenges in Nonlinear Plasma Physics: A Festschrift Honoring the Career of Dennis Papadopoulos, Vol. 1320, (2011), AIP), 55-64
[31] Karakatsanis, L. P.; Pavlos, G. P.; Xenakis, M. N., Tsallis nonextensive statistics, intermittence turbulence, SOC and chaos in the solar plasma. part two: solar flare dynamics, Physica A, 392, 18, 3920-3944, (2013)
[32] Pavlos, G. P.; Karakatsanis, L. P.; Xenakis, M. N., Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. part one: sunspot dynamics, Physica A, 391, 24, 6287-6319, (2012)
[33] Tsallis, C., Introduction to non-extensive statistical mechanics, (2009), Springer
[34] Zelenyi, L. M.; Milovanov, A. V., Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys.-Usp., 47, 8, 749-788, (2004)
[35] Burlaga, L. F., Evolution of the multiscale statistical properties of corotating streams from 1 to 95 AU, J. Geophys. Res., 108, 1305, (2003), A7
[36] Burlaga, L. F.; Vinas, A. F., Triangle for the entropic index \(q\) of non-extensive statistical mechanics observed by voyager 1 in the distant heliosphere, Physica A, 356, 375-384, (2005)
[37] Burlaga, L. F., Tsallis distributions of magnetic field strength variations in the heliosphere: 5 to 90 AU, J. Geophys. Res., 112, A07206, (2007)
[38] Chang, T., Low-dimensional behavior and symmetry braking of stochastic systems near criticality can these effects be observed in space and in the laboratory, IEEE, 20, 6, 691-694, (1992)
[39] Parker, E. N., Dynamics of the interplanetary gas and magnetic fields, Am. Astron. Soc., 664, (1958)
[40] Chang, T., Complexity forced and/or self organized criticality, and topological phase transitions in space plasmas, Space Sci. Rev., 107, 425-445, (2003)
[41] Milovanov, A. V., Percolation models of self organized critical phenomena, 103-174, (2013), Open Academic Press Berlin, Warsaw
[42] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 461-580, (2002)
[43] Tu, C.-Y.; Marsch, E., MHD structures, waves and turbulence in the solar wind: observations and theories, Space Sci. Rev., 73, 1-2, 1-210, (1995)
[44] Bruno, R.; Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2, 4, (2005)
[45] Milovanov, A. V.; Zelenyi, L. M., Development of fractal structure in the solar wind and distribution of magnetic field in the photosphere, (Burch, J. L.; Waite, J. H., Solar System Plasmas in Space and Time, (1994), American Geophysical Union Washington, DC)
[46] Milovanov, A. V.; Zelenyi, L. M., Fractal cluster in the solar wind, Adv. Space Res., 14, 7, 123-133, (1994)
[47] Zelenyi, L. M.; Milovanov, A. V., Fractal properties of sunspots, Sov. Astron. Lett., 17, 6, 425, (1991)
[48] Milovanov, A. V.; Zelenyi, L. M., Fracton excitations as a driving mechanism for the self-organized dynamical structuring in the solar wind, Astrophys. Space Sci., 264, 1-4, 317-345, (1999)
[49] Milovanov, A. V.; Zelenyi, L. M., Applications of fractal geometry to dynamical evolution of sunspots, Phys. Fluids B, 5, 2609, (1993)
[50] Tsallis, C., Possible generalization of BG statistics, J. Stat. Phys. J, 52, 1-2, 479-487, (1988)
[51] Pavlos, G. P., First and second order non-equilibrium phase transition and evidence for non-extensive Tsallis statistics in earth’s magnetosphere, Physica A, 390, 2819-2839, (2011)
[52] Pavlos, G. P.; Karakatsanis, L. P.; Xenakis, M. N.; Sarafopoulos, D.; Pavlos, E. G., Tsallis statistics and magnetospheric self-organization, Physica A, 391, 11, 3069-3080, (2012)
[53] Iliopoulos, A. C., Chaos, self organized criticality, intermittent turbulence and nonextensivity revealed from seismogenesis in north Aegean area, Internat. J. Bifur. Chaos, 22, 9, 1250224, (2012)
[54] Pavlos, G. P., Universality of Tsallis non-extensive statistics and time series analysis: theory and applications, Physica A, 395, 1, 58-95, (2014)
[55] Alemany, P. A.; Zanette, D. H., Fractal random walks from a variational formalism for Tsallis entropies, Phys. Rev. E, 49, 2, R956-R958, (1994)
[56] Shlesinger, M. F.; Zaslavsky, G. M.; Klafter, J., Strange kinetics, Nature, 363, 31, (1993)
[57] Arneodo, A.; Bacry, E.; Muzy, J. F., The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275, (1995)
[58] Theiler, J., Estimating fractal dimension, J. Opt. Soc. Amer. A, 7, 6, 1055-1073, (1990)
[59] Arimitsu, T.; Arimitsu, N., Tsallis statistics and fully developed turbulence, J. Phys. A: Math. Gen., 33, L235, (2000)
[60] Arimitsu, T.; Arimitsu, N., Analysis of turbulence by statistics based on generalized entropies, Physica A, 295, 177-194, (2001)
[61] Arimitsu, T.; Arimitsu, N., Analysis of velocity fluctuation in turbulence based on generalized statistics, J. Phys.: Condens. Matter, 14, 2237-2246, (2002)
[62] T. Arimitsu, et al. Towards a separation of the elements in turbulence via the analyses within MPDFT, 2011. http://arxiv.org/abs/1111.4383.
[63] Tsallis, C., Dynamical scenario for nonextensive statistical mechanics, Physica A, 340, 1-10, (2004)
[64] Umarov, S., On a \(q\)-central limit theorem consistent with non-extensive statistical mechanics, Milan J. Math., 76, 307-328, (2008)
[65] Tsallis, C., What should a statistical mechanics satisfy to reflect nature?, Physica D, 193, 3-34, (2004)
[66] Baldovin, F.; Stella, A. L., Central limit theorem for anomalous scaling due to correlations, Phys. Rev. E, 75, 020101 (R), (2007)
[67] Tsallis, C., Entropic nonextensivity a possible measure of complexity, Chaos Solitons Fractals, 13, 371-391, (2002)
[68] Chame, A.; de Mello, E. V.L., The fluctuation-dissipation theorem in the framework of the Tsallis statistics, J. Phys. A: Math. Gen., 27, 11, 3663-3670, (1994)
[69] Voros, Z., Magnetic turbulence in the plasma sheet, J. Geophys. Res., 109, A11215, (2004)
[70] Consolini, G., Multifractal structure of auroral electrojet index data, Phys. Rev. Lett., 76, 4082-4085, (1996)
[71] Ferri, G. L.; Reynoso Savio, M. F.; Plastino, A., Tsallis \(q\)-triplet and the ozone layer, Physica A, 389, 1829-1833, (2010)
[72] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134-1140, (1986)
[73] Frisch, U., Turbulence, 310, (1996), Cambridge University Press UK
[74] Safrankova, J., Fast solar wind monitor (BMSW): description and first results, Space Sci. Rev., 175, 1-4, 165-182, (2013)
[75] Zastenker, G. N., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 51, 2, 78-89, (2013)
[76] Gonzales, J. L., Nonadditive Tsallis entropy applied to the earth’s climate, Physica A, 390, 587-594, (2011)
[77] Arimitsu, T.; Arimitsu, N.; Yoshida, K.; Mouri, H., Multifractal PDF analysis for intermittent systems, (Riccardi, C.; Roman, H. E., Anomalous Fluctuation Phenomena in Complex Systems: Plasma Physics, Bio-Science and Econophysics (Special Review Book for Research Signpost), (2008), Research Signpost India), 25-55
[78] Arimitsu, N.; Arimitsu, T.; Mouri, H., Fluid Dynam. Res., 44, 031402, (2012)
[79] Milovanov, A. V.; Zelenyi, L. M., Fractal model for sunspot evolution, Geophys. Res. Lett., 19, 14, 1419-1422, (1992)
[80] Milovanov, A. V., Topological proof for the Alexander-orbach conjecture, Phys. Rev. E, 56, 3, 2437-2446, (1997)
[81] Milovanov, A. V., Pseudochaos and low-frequency percolation scaling for turbulent diffusion in magnetized plasma, Phys. Rev. E, 79, 4, 046403, (2009)
[82] Milovanov, A. V.; Zelenyi, L. M., Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions, Nonlinear Processes Geophys., 7, 211-221, (2000)
[83] Tarasov, V. E., Fractional Fokker-Planck equation for fractal media, Chaos, 15, 2, 023102, (2005)
[84] Tarasov, V. E., Magnetohydrodynamics for fractal media, Phys. Plasmas, 13, 052107, (2006)
[85] Chang, T.; VVedensky, D. D.; Nicoll, J. F., Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Rep., 217, 6, 279-360, (1992)
[86] Wilson, K. G., The renormalization group and critical phenomena, Rev. Modern Phys., 55, 3, 583, (1983)
[87] Chang, T., Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Phys. Plasmas, 6, 11, 4137-4145, (1999)
[88] Chang, T.; Wu, C., Complexity and anomalous transport in space plasmas, Phys. Plasmas, 9, 9, 3679-3684, (2002)
[89] Milovanov, A. V.; Zimbardo, G., Percolation in sign-symmetric random fields: topological aspects and numerical modeling, Phys. Rev. E, 62, 1, 250-260, (2000)
[90] Milovanov, A. V., Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient, Phys. Rev. E, 63, 047301, (2001)
[91] Tarasov, V. E., Review of some promising fractional physical models, Internat. J. Modern Phys. B, 27, 9, 1330005, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.