×

Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction. (English) Zbl 1395.81053

Summary: We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
78A55 Technical applications of optics and electromagnetic theory
81V80 Quantum optics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Shor, P.W.: In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Santa Fe (1994)
[2] Ekert, AK, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett., 67, 661, (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] Bennett, CH; Brassard, G; Crepeau, C; Jozsa, R; Peres, A; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895, (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[4] Schumacher, B, Sending entanglement through noisy quantum channels, Phys. Rev. A, 54, 2614, (1996) · doi:10.1103/PhysRevA.54.2614
[5] Buzek, V; Hillery, M, Quantum copying: beyond the no-cloning theorem, Phys. Rev. A, 54, 1844, (1996) · doi:10.1103/PhysRevA.54.1844
[6] You, JQ; Tsai, JS; Nori, F, Controllable manipulation of macroscopic quantum states in coupled charge qubits, Phys. Rev. B, 68, 024510, (2003) · doi:10.1103/PhysRevB.68.024510
[7] Wei, LF; Liu, YX; Nori, F, Testing bell’s inequality in constantly coupled Josephson circuits by effective single-qubit operations, Phys. Rev. B, 72, 104516, (2005) · doi:10.1103/PhysRevB.72.104516
[8] Wei, LF; Liu, YX; Nori, F, Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits, Phys. Rev. Lett., 96, 246803, (2006) · doi:10.1103/PhysRevLett.96.246803
[9] Wei, LF; Liu, YX; Storcz, MJ; Nori, F, Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits, Phys. Rev. A, 73, 052307, (2006) · doi:10.1103/PhysRevA.73.052307
[10] Yang, CP; Chu, SI; Han, S, Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A, 67, 042311, (2003) · doi:10.1103/PhysRevA.67.042311
[11] You, JQ; Nori, F, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B, 68, 064509, (2003) · doi:10.1103/PhysRevB.68.064509
[12] Blais, A; Huang, RS; Wallraff, A; Girvin, SM; Schoelkopf, RJ, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys. Rev. A, 69, 062320, (2004) · doi:10.1103/PhysRevA.69.062320
[13] You, JQ; Nori, F, Superconducting circuits and quantum information, Phys. Today, 58, 42, (2005) · doi:10.1063/1.2155757
[14] Clarke, J; Wilhelm, FK, Superconducting quantum bits, Nature, 453, 1031, (2008) · doi:10.1038/nature07128
[15] You, JQ; Nori, F, Atomic physics and quantum optics using superconducting circuits, Nature, 474, 589, (2011) · doi:10.1038/nature10122
[16] Xiang, ZL; Ashhab, S; You, JQ; Nori, F, Hybrid quantum circuits: superconducting circuits interacting with other quantum systems, Rev. Mod. Phys., 85, 623, (2013) · doi:10.1103/RevModPhys.85.623
[17] Gu, X; Kockum, AF; Miranowicz, A; Liu, YX; Nori, F, Microwave photonics with superconducting quantum circuits, Phys. Rep., 718-719, 1-102, (2017) · Zbl 1377.82052 · doi:10.1016/j.physrep.2017.10.002
[18] Blais, A; Maassen, BA; Zagoskin, AM, Tunable coupling of superconducting qubits, Phys. Rev. Lett., 90, 127901, (2003) · doi:10.1103/PhysRevLett.90.127901
[19] Zhu, SL; Wang, ZD; Zanardi, P, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett., 94, 100502, (2005) · doi:10.1103/PhysRevLett.94.100502
[20] Feng, W; Wang, P; Ding, X; Xu, L; Li, XQ, Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback, Phys. Rev. A, 83, 042313, (2011) · doi:10.1103/PhysRevA.83.042313
[21] Aldana, S; Wang, YD; Bruder, C, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B, 84, 134519, (2011) · doi:10.1103/PhysRevB.84.134519
[22] Yang, CP; Su, QP; Zheng, SB; Nori, F, Entangling superconducting qubits in a multi-cavity system, New J. Phys., 18, 013025, (2016) · doi:10.1088/1367-2630/18/1/013025
[23] Yang, CP; Su, QP; Zheng, SB; Han, S, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A, 87, 022320, (2013) · doi:10.1103/PhysRevA.87.022320
[24] Fedorov, A; Steffen, L; Baur, M; Silva, MP; Wallraff, A, Implementation of a Toffoli gate with superconducting circuits, Nature, 481, 170, (2012) · doi:10.1038/nature10713
[25] Leek, PJ; Filipp, S; Maurer, P; Baur, M; Bianchetti, R; Fink, JM; Göppl, M; Steffen, L; Wallraff, A, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B, 79, 180511(r), (2009) · doi:10.1103/PhysRevB.79.180511
[26] DiCarlo, L; Chow, JM; Gambetta, JM; Bishop, LS; Johnson, BR; Schuster, DI; Majer, J; Blais, A; Frunzio, L; Girvin, SM; Schoelkopf, RJ, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 240, (2009) · doi:10.1038/nature08121
[27] Ansmann, M; Wang, H; Bialczak, RC; Hofheinz, M; Lucero, E; Neeley, M; O’Connell, AD; Sank, D; Weides, M; Wenner, J; Cleland, AN; Martinis, JM, Violation of bell’s inequality in Josephson phase qubits, Nature, 461, 504, (2009) · doi:10.1038/nature08363
[28] Chow, JM; DiCarlo, L; Gambetta, JM; Nunnenkamp, A; Bishop, LS; Frunzio, L; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Detecting highly entangled states with a joint qubit readout, Phys. Rev. A, 81, 062325, (2010) · doi:10.1103/PhysRevA.81.062325
[29] DiCarlo, L; Reed, MD; Sun, L; Johnson, BR; Chow, JM; Gambetta, JM; Frunzio, L; Girvin, SM; Devoret, MH; Schoelkopf, RJ, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature, 467, 574, (2010) · doi:10.1038/nature09416
[30] Song, C., et al.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. arXiv:1703.10302
[31] Barends, R; etal., Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature, 508, 500, (2014) · doi:10.1038/nature13171
[32] Cirac, JI; Zoller, P, Preparation of macroscopic superpositions in many-atom systems, Phys. Rev. A, 50, 2799(r), (1994) · doi:10.1103/PhysRevA.50.R2799
[33] Gerry, CC, Preparation of multiatom entangled states through dispersive atom-cavity-field interactions, Phys. Rev. A, 53, 2857, (1996) · doi:10.1103/PhysRevA.53.2857
[34] Zheng, SB, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett., 87, 230404, (2001) · doi:10.1103/PhysRevLett.87.230404
[35] Zheng, SB, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity, Phys. Rev. A, 66, 060303, (2002) · doi:10.1103/PhysRevA.66.060303
[36] Duan, LM; Kimble, H, Efficient engineering of multiatom entanglement through single-photon detections, Phys. Rev. Lett., 90, 253601, (2003) · doi:10.1103/PhysRevLett.90.253601
[37] Wang, X; Feng, M; Sanders, BC, Multipartite entangled states in coupled quantum dots and cavity QED, Phys. Rev. A, 67, 022302, (2003) · doi:10.1103/PhysRevA.67.022302
[38] Yang, W; Xu, Z; Feng, M; Du, J, Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity, New J. Phys., 12, 113039, (2010) · doi:10.1088/1367-2630/12/11/113039
[39] Chen, Q; Yang, W; Feng, M; Du, J, Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators, Phys. Rev. A, 83, 054305, (2011) · doi:10.1103/PhysRevA.83.054305
[40] Koch, J; etal., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, 76, 042319, (2007) · doi:10.1103/PhysRevA.76.042319
[41] Yu, Y., Han, S.: Private communication
[42] Neeley, M; etal., Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys., 4, 523, (2008) · doi:10.1038/nphys972
[43] Zagoskin, AM; Ashhab, S; Johansson, JR; Nori, F, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett., 97, 077001, (2006) · doi:10.1103/PhysRevLett.97.077001
[44] Leek, PJ; etal., Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B, 79, 180511(r), (2009) · doi:10.1103/PhysRevB.79.180511
[45] Strand, JD; etal., First-order sideband transitions with flux-driven asymmetric transmon qubits, Phys. Rev. B, 87, 220505(r), (2013) · doi:10.1103/PhysRevB.87.220505
[46] Xiang, ZL; Lü, XY; Li, TF; You, JQ; Nori, F, Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator, Phys. Rev. B, 87, 144516, (2013) · doi:10.1103/PhysRevB.87.144516
[47] Neumann, P; Kolesov, R; Jacques, V; Beck, J; Tisler, J; Batalov, A; Rogers, L; Manson, NB; Balasubramanian, G; Jelezko, F; Wrachtrup, J, Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance, New J. Phys., 11, 013017, (2009) · doi:10.1088/1367-2630/11/1/013017
[48] Pradhan, P., Anantram, M.P., Wang, K.L.: Quantum computation by optically coupled steady atoms/quantum-dots inside a quantum electro-dynamic cavity. arXiv:quant-ph/0002006
[49] Yang, CP; Su, QP; Zheng, SB; Nori, F; Han, S, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A, 95, 052341, (2017) · doi:10.1103/PhysRevA.95.052341
[50] DiCarlo, L; etal., Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature, 467, 574, (2010) · doi:10.1038/nature09416
[51] Baur, M; Filipp, S; Bianchetti, R; Fink, JM; Göppl, M; Steffen, L; Leek, PJ; Blais, A; Wallraff, A, Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit, Phys. Rev. Lett., 102, 243602, (2009) · doi:10.1103/PhysRevLett.102.243602
[52] Rigetti, C; etal., Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms, Phys. Rev. B, 86, 100506(r), (2012) · doi:10.1103/PhysRevB.86.100506
[53] Chang, JB; etal., Improved superconducting qubit coherence using titanium nitride, Appl. Phys. Lett., 103, 012602, (2013) · doi:10.1063/1.4813269
[54] Chow, JM; etal., Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat. Commun., 5, 4015, (2014) · doi:10.1038/ncomms5015
[55] Peterer, MJ; etal., Coherence and decay of higher energy levels of a superconducting transmon qubit, Phys. Rev. Lett., 114, 010501, (2015) · doi:10.1103/PhysRevLett.114.010501
[56] You, JQ; etal., Low-decoherence flux qubit, Phys. Rev. B, 75, 140515(r), (2007) · doi:10.1103/PhysRevB.75.140515
[57] Sank, D; etal., Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation, Phys. Rev. Lett., 117, 190503, (2016) · doi:10.1103/PhysRevLett.117.190503
[58] Chen, W; Bennett, DA; Patel, V; Lukens, JE, Substrate and process dependent losses in superconducting thin film resonators, Supercond. Sci. Technol., 21, 075013, (2008) · doi:10.1088/0953-2048/21/7/075013
[59] Leek, PJ; Baur, M; Fink, JM; Bianchetti, R; Steffen, L; Filipp, S; Wallraff, A, Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett., 104, 100504, (2010) · doi:10.1103/PhysRevLett.104.100504
[60] Yang, CP; Chu, SI; Han, S, Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett., 92, 117902, (2004) · doi:10.1103/PhysRevLett.92.117902
[61] Yang, CP; Han, S, N-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator, Phys. Rev. A, 72, 032311, (2005) · doi:10.1103/PhysRevA.72.032311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.