×

zbMATH — the first resource for mathematics

Simple graphs in granular computing. (English) Zbl 1395.68260
Summary: Given a graph, we interpret its adjacency matrix as an information table. We study this correspondence in two directions. Firstly, on the side of graphs by applying to it standard techniques from granular computing. In this way, we are able to connect automorphisms on graphs to the so-called indiscernibility relation and a particular hypergraph built from the starting graph to core and reducts. On the other hand, new concepts are introduced on graphs that have an interesting correspondence on information tables. In particular, some new topological interpretations of the graph and the concept of extended core are given.

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C65 Hypergraphs
68R10 Graph theory (including graph drawing) in computer science
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berge, C., Hypergraphs: Combinatorics of Finite Sets, (1984), Elsevier Amsterdam
[2] Bianchi, F. M.; Livi, L.; Rizzi, A.; Sadeghian, A., A granular computing approach to the design of optimized graph classification systems, Soft Comput., 18, 393-412, (2014)
[3] Cattaneo, G.; Chiaselotti, G.; Ciucci, D.; Gentile, T., On the connection of hypergraph theory with formal concept analysis and rough set theory, Inf. Sci., 330, 342-357, (2016) · Zbl 1390.68618
[4] Chen, J.; Li, J., An application of rough sets to graph theory, Inf. Sci., 201, 114-127, (2012) · Zbl 1251.05165
[5] Chen, G.; Zhong, N., Granular structures in graphs, Proceedings of Rough Sets and Knowledge Technology 2011, Lecture Notes in Computer Science, vol. 6954, 649-658, (2011)
[6] Chen, G.; Zhong, N., Three granular structure models in graphs, Proceedings of Rough Sets and Knowledge Technology 2012, Lecture Notes in Computer Science, vol. 7414, 351-358, (2012)
[7] Chen, G.; Zhong, N.; Yao, Y., A hypergraph model of granular computing, Proceedings of IEEE International Conference on Granular Computing, 130-135, (2008)
[8] Chiaselotti, G.; Ciucci, D.; Gentile, T., Simple undirected graphs as formal contexts, Proceedings of ICFCA, Lecture Notes in Computer Science, vol. 9113, 287-302, (2015) · Zbl 1312.68184
[9] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., Rough set theory applied to simple undirected graphs, Proceedings of RSKT 2015, Lecture Notes in Computer Science, vol. 9436, 423-434, (2015), Springer
[10] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., Preclusivity and simple graphs, Proceedings of RSFDGrC 2015, Lecture Notes in Computer Science, vol. 9437, 127-137, (2015), Springer
[11] Chiaselotti, G.; Gentile, T.; Infusino, F.; Oliverio, P. A., Rough sets for n-cycles and n-paths, Appl. Math. Inf. Sci., 10, 1, 117-124, (2016)
[12] G. Chiaselotti, D. Ciucci, T. Gentile, F. Infusino, Generalizations of rough set tools inspired by graph, Fundam. Inf. 2016, submitted. · Zbl 1388.03045
[13] Diestel, R., Graph theory, Graduate Text in Mathematics, (2010), Springer · Zbl 1204.05001
[14] Doreian, P.; Batagelj, V.; Ferligoj, A., Generalized Blockmodeling, (2005), Cambridge University Press
[15] Eiter, T.; Gottlob, G., Identifying the minimal transversals of a hy- pergraph and related problems, SIAM J. Comput., 24, 1278-1304, (1995) · Zbl 0842.05070
[16] Eiter, T.; Gottlob, G., Hypergraph transversal computation and related problems in logic and AI, Proceedings of JELIA 2002, Lecture Notes in Computer Science, vol. 2424, 549-564, (2002) · Zbl 1013.68143
[17] Godsil, C.; Royle, G., Algebraic Graph Theory, Graduate Text in Mathematics, (2001), Springer · Zbl 0968.05002
[18] Hońko, P., Relational pattern updating, Inf. Sci., 189, 208-218, (2012)
[19] Hońko, P., Association discovery from relational data via granular computing, Inf. Sci., 10, 136-149, (2013) · Zbl 1284.68497
[20] Kang, X.; Li, D.; Wang, S.; Qu, K., Formal concept analysis based on fuzzy granularity base for different granulations, Fuzzy Sets Syst., 203, 33-48, (2012) · Zbl 1254.68249
[21] Kreinovich, V., Interval computation as an important part of granular computing: an introduction, Handbook of Granular Computing, 3-32, (2008)
[22] Liang, M.; Liang, B.; Wei, L.; Xu, X., Edge rough graph and its application, Proceedings of Eighth International Conference on IEEE Fuzzy Systems and Knowledge Discovery (FSKD), vol. 1, (2011)
[23] Lin, T. Y., Data mining: granular computing approach, Methodologies for Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, 1574, 24-33, (1999)
[24] Lin, T. Y., Data mining and machine oriented modeling: a granular approach, Appl. Intell., 13, 113-124, (2000)
[25] Pawlak, Z., Information systems theoretical foundations, Inf. Sci., 6, Issue 3, 205-218, (1981) · Zbl 0462.68078
[26] Pawlak, Z., Rough sets, Theoretical Aspects of Reasoning about Data, (1991), Kluwer Academic Publisher · Zbl 0604.90084
[27] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 3-27, (2007) · Zbl 1142.68549
[28] Pedrycz, W., Granular Computing: An Emerging Paradigm, (2001), Springer-Verlag Berlin · Zbl 0966.00017
[29] Pedrycz, W.; Hirota, K.; Pedrycz, W.; Dong, F., Granular representation and granular computing with fuzzy sets, Fuzzy Sets Syst., 203, 17-32, (2012)
[30] Pedrycz, W.; Skowron, A.; Kreinovich, V., Handbook of Granular Computing, (2008), Wiley
[31] Qiu, T.; Chen, X.; Liu, Q.; Huang, H., Granular computing approach to finding association rules in relational database, Int. J. Intell. Syst., 25, 165-179, (2010) · Zbl 1213.68238
[32] Skowron, A.; Rauszer, C., The discernibility matrices and functions in information systems, Intelligent Decision Support, Theory and Decision Library series, vol. 11, 331-362, (1992), Springer Netherlands
[33] Skowron, A.; Wasilewski, P., Information systems in modeling interactive computations on granules, Theor. Comput. Sci., 412, 5939-5959, (2011) · Zbl 1223.68118
[34] Skowron, A.; Wasilewski, P., Interactive information systems: toward perception based computing, Theor. Comput. Sci., 454, 240-260, (2012) · Zbl 1286.68480
[35] Stell, J. G., Granulation for graphs, Spatial Information Theory, Lecture Notes in Computer Science, Volume 1661, 417-432, (1999)
[36] Stell, J. G., Relations in mathematical morphology with applications to graphs and rough sets, Sp. Inf. Th., Lecture Notes in Computer Science, Volume 4736, 438-454, (2007)
[37] Stell, J. G., Relational granularity for hypergraphs, RSCTC, Lecture Notes in Computer Science, Volume 6086, 267-276, (2010)
[38] Stell, J. G., Formal concept analysis over graphs and hypergraphs, Proceedings of GKR 2013, Lecture Notes in Computer Science, vol. 8323, 165-179, (2014)
[39] Stepaniuk, J., Rough - Granular Computing in Knowledge Discovery and Data Mining, (2008), Springer-Verlag Berlin-Heidelberg · Zbl 1173.68646
[40] Wang, J.; Zhu, W., An approach to covering-based rough sets through bipartite graphs, Proceedings of FUZZ-IEEE, 1213-1218, (2014)
[41] Wang, S.; Zhu, Q.; Zhu, W.; Min, F., Equivalent characterizations of some graph problems by covering-based rough sets, J. Appl. Math., 2013, 7, (2013) · Zbl 1283.05227
[42] Wu, W. Z.; Leung, Y.; Mi, J. S., Granular computing and knowledge reduction in formal contexts, IEEE Trans. Knowl. Data Eng., 21, 1461-1474, (2009)
[43] Yao, Y. Y., On modeling data mining with granular computing, Proceedings of COMPSAC 2001. IEEE, 638-643, (2001)
[44] Yao, Y. Y., Information granulation and rough set approximation, Int. J. Intell. Syst., 16, 1, 87-104, (2001) · Zbl 0969.68079
[45] Yao, Y. Y., A partition model of granular computing, Transactions on Rough sets I, Lecture Notes in Computer Science, vol. 3100, 232-253, (2004), Springer-Verlag · Zbl 1104.68776
[46] Yao, Y. Y.; Zhong, N., Granular computing using information tables, Data Mining, Rough Sets and Granular Computing, 102-124, (2002), Physica-Verlag · Zbl 1017.68053
[47] Yao, J. T.; Yao, Y. Y., A granular computing approach to machine learning, Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery, 732-736, (2002)
[48] Zadeh, L. A., Fuzzy sets and information granularity, (Gupta, N.; Ragade, R.; Yager, R., Advances in Fuzzy Set Theory and Applications, (1979), North-Holland Amsterdam), 3-18
[49] Zadeh, L. A., Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets Syst., 19, 111-127, (1997) · Zbl 0988.03040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.