zbMATH — the first resource for mathematics

Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus. (English) Zbl 1395.35074
Let \(L={\partial\over\partial t}+ \sum^N_{j=1} (a_j+ ib_j)(t){\partial\over\partial x_j}\) be a vector field defined on \(\mathbb T^{N+1}\simeq \mathbb R^{N+2}/2\pi \mathbb Z^{N+1}\), where \(a_j\), \(b_j\) are real-valued functions and belonging to the Gevrey class \(G^s(\mathbb T^1)\), \(s> 1\), for \(j= 1,\dots, N\). The author presents a complete characterization for the \(s\)-global solvability and \(s\)-global hypoellipticity of \(L\). His results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets.
For \(s>1\) introduce the following exponential Diophantine conditions for a pair \((\alpha,\beta)\in \mathbb R^N\times\mathbb R^N\):
\((EDC)^s_1\): For each \(\varepsilon> 0\) there exists a positive constant \(C_\varepsilon\) such that \[ |\tau+\langle\xi,\alpha+i\beta\rangle|\geq C_\varepsilon\exp\{-\varepsilon(|\xi|+ |\tau|)^{1/s}\}, \] for all \((\xi,\tau)= (\xi_1,\dots,\xi_N,\tau)\in \mathbb Z^{N+1}\setminus\{0\}\).
\((EDC)^s_2\): For each \(\varepsilon>0\) there exists a positive constant \(C_\varepsilon\) such that \[ |\tau+\langle\xi,\alpha+i\beta\rangle|\geq C_\varepsilon\exp\{-\varepsilon|\xi|+ |\tau|)^{1/s}\}, \] for all \((\xi,\tau)= (\xi_1,\dots, \xi_N,\tau)\in \mathbb Z^{N+1}\) such that \(\tau+\langle\xi,\alpha+\beta\rangle\neq 0\).
Define \(\alpha= (a_1,\dots, a_N),\quad \beta=(\beta_1,\dots, \beta_N)\), \(a_{j,0}= {1\over 2\pi} \int^{2\pi}_0 a_j(t)\,dt,\quad b_{j0}= {1\over 2\pi} \int^{2\pi}_0 a_j(t)\,dt\), \(\alpha_0= (a_{10},\dots, a_{N0})\), \(\beta_0= (b_{10},\dots, b_{N0})\). The author has obtained the following two theorems.
Theorem 1. Let \(L\) be given by above. Then, \(L\) is \(s\)-global solvable \((s>1)\) if and only if one of the following situations occurs:
For each \(j=1,\dots,N\), \(b_j\) vanishes identically, and \((\alpha_0, 0)\) satisfies \((EDC)^s_2\).
At least one \(b_j\) dones not vanishes identically, \(b_{k0}=0\) for each \(k= 1,\dots, N\), \(\alpha_0\in \mathbb Z^N\), and the sublevel sets \[ \Biggl\{t\in \mathbb T^1;\,\int^t_0 (\xi,\beta(\tau))\,d\tau< r\Biggr\},\;r\in \mathbb R,\;\xi\in \mathbb Z^N, \] are connected.
\(b_{j0}\neq 0\) for at least one \(j\in\{1,\dots,N\}\), and the following conditions hold:
dim span\(\{b_1,\dots,b_N\}=1\);
the functions \(b_j\) do not change sign;
the pair \((\alpha_0,\beta_0)\) satisfies \((EDC)^s_2\).

Theorem 2. Let \(L\) be given by above. Then, \(L\) is \(s\)-global hypoelliptic \((s>1)\) if and only if the following conditions are satisfied:
each \(b_j\) does not change sign;
dim span\(\{b_1,\dots,b_N\}\leq 1\);
\((\alpha_0,\beta_0)\) satisfies \((EDC)^s_1\).

35H10 Hypoelliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B10 Periodic solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI
[1] Albanese, A. A.; Popivanov, P., On the global solvability in Gevrey classes on the n-dimensional torus, J. Math. Anal. Appl., 297, 659-672, (2004) · Zbl 1058.35055
[2] Albanese, A. A.; Popivanov, P., Global analytic and Gevrey solvability of sublaplacians under Diophantine conditions, Ann. Mat. Pura Appl., 185, 3, 395-409, (2007) · Zbl 1232.35035
[3] Albanese, A. A.; Zanghirati, L., Global hypoellipticity and global solvability in Gevrey classes on the n-dimensional torus, J. Differential Equations, 199, 256-268, (2004) · Zbl 1063.35059
[4] Bergamasco, A., Perturbations of globally hypoelliptic operators, J. Differential Equations, 114, 513-526, (1994) · Zbl 0815.35009
[5] Bergamasco, A., Remarks about global analytic hypoellipticity, Trans. Amer. Math. Soc., 351, 4113-4126, (1999) · Zbl 0932.35046
[6] Bergamasco, A.; Cordaro, P.; Petronilho, G., Global solvability for a class of complex vector fields on the two-torus, Comm. Partial Differential Equations, 29, 785-819, (2004) · Zbl 1065.35088
[7] Bergamasco, A.; Dattori da Silva, P. L., Solvability in the large for a class of vector fields on the torus, J. Math. Pures Appl., 86, 427-447, (2006) · Zbl 1157.35304
[8] Bergamasco, A. P.; Dattori da Silva, P. L.; Ebert, M. R., Gevrey solvability near the characteristic set for a class of planar complex vector fields of infinite type, J. Differential Equations, 246, 4, 1673-1702, (2009) · Zbl 1173.35300
[9] Bergamasco, A.; Dattori da Silva, P. L.; Gonzalez, R., Existence and regularity of solutions to certain first-order partial differential operators on the torus, J. Fourier Anal. Appl., 23, 65-90, (2017) · Zbl 1357.35020
[10] Bergamasco, A.; Dattori da Silva, P. L.; Gonzalez, R.; Kirilov, A., Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus, J. Pseudo-Differ. Oper. Appl., 6, 341-360, (2015) · Zbl 1336.35124
[11] Dattori da Silva, P. L.; Fronza da Silva, M., Gevrey global solvability of non-singular real first-order differential operators, Ann. Mat. Pura Appl., 192, 245-253, (2013) · Zbl 1263.35065
[12] Gramchev, T.; Popivanov, P.; Yoshino, M., Global solvability and hypoellipticity on the torus for a class of differential operators with variable coefficients, Proc. Japan Acad., 68, 53-57, (1992) · Zbl 0805.35023
[13] Greenfield, S.; Wallach, N., Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc., 31, 112-114, (1972) · Zbl 0229.35023
[14] Hörmander, L., Linear partial differential operators, (1963), Springer Berlin · Zbl 0171.06802
[15] Hounie, J., Globally hypoelliptic and globally solvable first order evolutions equations, Trans. Amer. Math. Soc., 252, 233-248, (1979) · Zbl 0424.35030
[16] Petronilho, G., Global s-solvability, global s-hypoellipticity and Diophantine phenomena, Indag. Math. (N.S.), 16, 1, 67-90, (2005) · Zbl 1065.35100
[17] Petronilho, G., On Gevrey solvability and regularity, Math. Nachr., 282, 3, 470-481, (2009) · Zbl 1172.35365
[18] Rodino, L., Linear partial differential operators in Gevrey spaces, (1993), World Scientific Publishing Co. Pte. Ltd. · Zbl 0869.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.