×

QCA gray code converter circuits using LTEx methodology. (English) Zbl 1394.81096

Summary: The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The “defect-tolerant analysis” of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost\(_\alpha\) for the n-bit converter layouts.

MSC:

81P70 Quantum coding (general)
81P68 Quantum computation
81Q37 Quantum dots, waveguides, ratchets, etc.
68Q80 Cellular automata (computational aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lent, C; Tougaw, P; Porod, W; Bernstein, G, Quantum cellular automata, Nanotechnology (1993), 4, 49-57, (1993) · doi:10.1088/0957-4484/4/1/004
[2] Tougaw, P; Lent, C, Logical devices implemented using quantum cellular automata, J. Appl. Phys., 85, 1818-1825, (1994) · doi:10.1063/1.356375
[3] Lent, C; Tougaw, P, A device architecture for computing with quantum dots, Proceedings of IEEE, 85, 541-557, (1997) · doi:10.1109/5.573740
[4] Walus, K; Vetteth, A; Jullien, GA; Dimitrov, VS, RAM design using quantum-dot cellular automata, Proceedings of the Nanotechnology Conference and Trade Show, 2, 160-163, (2003)
[5] Frost, S., Rodrigues, A.F., Janiszewski, A.W., Raush, R.K., Kogge, P.M.: Memory in Motion: A study of storage structures in QCA, First Workshop on Non-Silicon Computing (2002)
[6] Berzon, D., Fountain, T.J.: A memory design in QCA using the SQUARES formalism. In: Proceedings of 9th Great Lakes Symposium on VLSI, pp 166-169 (1999). https://doi.org/10.1109/GLSV.1999.757402
[7] Heikalabad, SR; Navin, AH; Hosseinzadeh, M, Content addressable memory cell in quantum-dot cellular automata, Microelectronics Engineering, 163, 140-150, (2016) · doi:10.1016/j.mee.2016.06.009
[8] Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley, New York (2005). ISBN: 978-0-471-64800-0 · Zbl 1314.94003 · doi:10.1002/0471739219
[9] Ahmed, F., Ahmed, P.Z., Mohiuddin Bhat, G.: Design and analysis of odd-even-parity generators and checkers using Quantum-dot Cellular Automata (QCA). In: 2\^{}{\(n\)\(d\)} International Conference on Computing for Sustainable Global Development (INDIACom), pp. 187-194 (2015)
[10] Ilanchezhian, P; Parvathi, RMS, Nanotechnology based effective design approach for code converter circuits using QCA, Int. J. Comput. Appl., 69, 1-5, (2013)
[11] Iqbal, J; Khanday, FA; Shah, NA, Efficient quantum dot cellular automata (QCA) implementation of code converters, Communications in Information Science and Management Engineering, 3, 504-515, (2013)
[12] Waje, M.G., Dakhole, P.K.: Design and Simulation of New XOR Gate and Code Converters using Quantum Dot Cellular Automata with reduced number of wire crossings. IEEE International Conference on Circuit Power and Computing Technologies, pp. 1245-1250 (2014). https://doi.org/10.1109/ICCPCT.2014.7054942
[13] Ahmed, F; Bhat, GM, Novel code converters based on quantum-dot cellular automata (QCA), International Journal of Science and Research, 3, 364-371, (2014)
[14] Beigh, MR; Mustafa, M, Design and simulation of efficient code converter circuits for quantum-dot cellular automata, Journal of Computation and Theoretical Nanoscience, 11, 2564-2569, (2014) · doi:10.1166/jctn.2014.3673
[15] Ahmad, F; Md, G; Bhat, PZ; Ahmad, HA; Khan, R, Farooq, design of N-bit code converter using quantum-dot cellular automata (QCA), advanced science, Engineering and Medicine, 7, 1-8, (2015) · doi:10.1166/asem.2015.1677
[16] Rao, N.G., Srikanth, P.C., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-International Journal of Light Electron Optic, pp. 1-4 (2015). https://doi.org/10.1016/j.ijleo.2015.12.119
[17] Islam, S; Abdullah-al Shafi, Md; Bahar, AN, Implementation of binary to gray code converters in quantum dot cellular automata, Journal of Today’s Ideas-Tomorrow’s Technologies, 3, 145-160, (2015) · doi:10.15415/jotitt.2015.32010
[18] Karkaj, ET; Heikalabad, SR, Binary to gray and gray to binary converter in quantum-dot cellular automata, Optik-International Journal of Light Electron Optic, 130, 981-989, (2016) · doi:10.1016/j.ijleo.2016.11.087
[19] Abdullah-al Shafi, Md; Bahar, AN, Novel binary to gray code converters in QCA with power dissipation analysis, International Journal of Multimedia and Ubiquitous Engineering, 11, 379-396, (2016) · doi:10.14257/ijmue.2016.11.8.38
[20] Mukherjee, C., Sukla, S.S., Basu, S.S., Chakraborty, R., De, D., Layered, T.: Full Adder using Quantum-dot Cellular Automata. In: IEEE International Conference on Electronics, Computing and Communication Technologies, pp. 1-6 (2015). https://doi.org/10.1109/CONECCT.2015.7383867
[21] QCADesigner, Available: www.atips.ca/projects/qcadesigner
[22] Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10\^{}{\(t\)\(h\)} International Workshop on Computational Electronics, pp. 120-121 (2004). https://doi.org/10.1109/IWCSE.2004.1407356
[23] Toth, G; Lent, CS, Quasi-adiabatic switching for metal-island quantum-dot cellular automata, J. Appl. Phys., 85, 2977-2984, (1999) · doi:10.1063/1.369063
[24] Lent, C, Molecular electronics-bypassing the transistor paradigm, Science, 288, 1597-1599, (2000) · doi:10.1126/science.288.5471.1597
[25] Imre, A; Csaba, G; Ji, L; Orlov, A; Bernstein, GH; Porod, W, Majority logic gate for magnetic quantum-dot cellular automata, Science, 311, 205-208, (2006) · doi:10.1126/science.1120506
[26] Dilabio, G.A., Wolkow, R.A., Pitters, J.L., Piva, G.: Atomistic quantum dots,. USA patent, US 2015/006071 A1 (2015)
[27] Zhang, R; Walus, K; Wang, W; Julien, GA, A method of majority logic reduction for quantum cellular automata, IEEE Trans. Nanotechnol., 3, 443-450, (2004) · doi:10.1109/TNANO.2004.834177
[28] Sen, B., Sengupta, A., Dalui, M., Sikdar, B.K.: Design of Testable Universal Logic Gate Targeting Minimum Wire Crossings in QCA Logic Circuit. In: 13\^{}{\(t\)\(h\)} Euromicro Conference on Digital Systems Design: Architectures, Methods and Tools, pp. 613-620 (2010). https://doi.org/10.1109/DSD.2010.114
[29] Momenzadeh, M; Huang, J; Tahoori, MB; Lombardi, F, Characterization, test and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 24, 1881-1893, (2005) · doi:10.1109/TCAD.2005.852667
[30] Khanday, F.A., Kant, N.A., Bangi, Z.A., Shah, N.A., novel Universal, A: (FNZ) Gate in quantum cellular automata, international conference on multimedia. Signal Processing and Communication Technologies, pp. 255-259 (2013). https://doi.org/10.1109/MSPCT.2013.6782130
[31] Mukherjee, C., Roy, S.S., Panda, S., Maji, B.: T-Gate: Concept of partial polarization in Quantum dot Cellular Automata. In: 20\^{}{\(t\)\(h\)} International Symposium on VLSI Design and Test. Paper ID: 47 (2016)
[32] Su, C., Tsui, C., Despain, A.M.: Reduce power consumption of a high performance processor through gray code addressing, CENG technical report, advanced computer architecture laboratory, university of southern california, Los Angeles, pp. 3-11 (1993)
[33] Mehta, H., Owens, R.M., Irwin, M.J.: Some issues in gray code addressing. In: Proceedings of the 6th Great Lake Symposium on VLSI, pp 178-181 (1996). https://doi.org/10.1109/GLS.1996.497616
[34] Kumar, D., Mitra, D., Bhattacharya, B.B.: On Fault-Tolerant Design of exclusive-OR Gates in QCA, Emerging Technologies. Available: arXiv:1612.02975 (2016)
[35] Moris Mano, M.: Computer System Architecture. Pearson Education India. ISBN-13: 978-8131700709 (2007)
[36] Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with application to /dev/random. In: 12\^{}{\(t\)\(h\)} Conference on Computer and Communication Security, pp 203-212 (2005)
[37] Lin, S., Costello, D.J. Jr.: Error Control Coding, Pearson Education India. ISBN-13: 978-8131734407 (2011)
[38] Mukherjee, C; Panda, S; Mukhopadhyay, AK; Maji, B, Synthesis of standard functions and generic ex-OR gate using layered T gate, International Journal of High Performance Systems Architecture, 7, 87-97, (2017) · doi:10.1504/IJHPSA.2017.087164
[39] Sen, B., Nag, A., De, A., Sikdar, B.K.: Multilayer design of QCA multiplexer. Annual IEEE India Conference, pp. 1-6 (2013). https://doi.org/10.1109/INDICON.2013.6725909
[40] Tahoori, MB; Huang, J; Momenzadeh, M; Lombardi, F, Testing of quantum cellular automata, IEEE Trans. Nanotechnol., 3, 432-442, (2004) · doi:10.1109/TNANO.2004.834169
[41] Sen, B., Agarwal, A., Nath, R.K., Mukherjee, R., Sikdar, B.K.: Efficient design of fault tolerant tiles in QCA. Annual IEEE India Conference, pp. 1-6 (2014). https://doi.org/10.1109/INDICON.2014.7030690
[42] Okazawa, J.: Storing data in a grey code system. USA Patent, US 6308249 B1 (2001)
[43] Bray, B.B.: The Intel Microprocessors, Pearson Education India. ISBN-13: 978-8131726228 (2008)
[44] Perri, S; Corsonello, P; Cocorullo, G, Design of efficient binary comparators in quantum-dot cellular automata, IEEE Trans. Nanotechnol., 13, 192-202, (2014) · doi:10.1109/TNANO.2013.2295711
[45] Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E. Jr.: Design Rules for Quantum-dot Cellular Automata. In: Proceedings of 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2361-2364 (2011). https://doi.org/10.1109/ISCAS.2011.5938077
[46] Chandra, JS; Suresh, K; Ghosh, B, Clocking scheme implementation for multi-layered quantum dot cellular automata design, Journal of Low Power Electronics, 10, 272-278, (2014) · doi:10.1166/jolpe.2014.1314
[47] Gin, A; Tougaw, PD; Williams, S, An alternative geometry for quantum-dot cellular automata, AIP J. Appl. Phys., 85, 8281-8286, (1999) · doi:10.1063/1.370670
[48] Liu, W; Lu, L; O’Neil, M; Swartzlander, EE, A first step toward cost functions for quantum-dot cellular automata designs, IEEE Trans. Nanotechnol., 13, 476-487, (2014) · doi:10.1109/TNANO.2014.2306754
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.