×

Quantum observables and effect algebras. (English) Zbl 1394.81020

Summary: We study observables on monotone \(\sigma\)-complete effect algebras. We find conditions when a spectral resolution implies existence of the corresponding observable. We characterize sharp observables of a monotone \(\sigma\)-complete homogeneous effect algebra using its orthoalgebraic skeleton. In addition, we study compatibility in orthoalgebras and we show that every orthoalgebra satisfying RIP is an orthomodular poset.

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets
46L10 General theory of von Neumann algebras
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bauer, H.: Probability theory. de Gruyter, Berlin (1996) · Zbl 0868.60001 · doi:10.1515/9783110814668
[2] Buhagiar, D; Chetcuti, E; Dvurečenskij, A, Loomis-sikorski representation of monotone σ-complete effect algebras, Fuzzy Sets Syst., 157, 683-690, (2006) · Zbl 1097.06010 · doi:10.1016/j.fss.2005.09.013
[3] Dvurečenskij, A, Measures and ⊥-decomposable measures on effects of a Hilbert space, Atti Sem. Mat. Fis. Univ. Modena, 45, 259-288, (1997) · Zbl 0915.46059
[4] Dvurečenskij, A, Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups, J. Austral. Math. Soc. Ser A, 68, 261-277, (2000) · Zbl 0958.06006 · doi:10.1017/S1446788700001993
[5] Dvurečenskij, A, On effect algebras which can be covered by MV-algebras, Inter. J. Theor. Phys., 41, 221-229, (2002) · Zbl 1022.06005 · doi:10.1023/A:1014002721731
[6] Dvurečenskij, A, Central elements and Cantor-bernstein’s theorem for pseudo-effect algebras, J. Austral. Math Soc., 74, 121-143, (2003) · Zbl 1033.03036 · doi:10.1017/S1446788700003177
[7] Dvurečenskij, A, Representable effect algebras and observables, Inter. J. Theor. Phys., 53, 2855-2866, (2014) · Zbl 1308.81011 · doi:10.1007/s10773-014-2083-z
[8] Dvurečenskij, A.: On orders of observables on effect algebras, Inter. J. Theor. Phys. https://doi.org/10.1007/s10773-017-3472-x · Zbl 1315.03122
[9] Dvurečenskij, A; Kuková, M, Observables on quantum structures, Inf. Sci., 262, 215-222, (2014) · Zbl 1329.81140 · doi:10.1016/j.ins.2013.09.014
[10] Dvurečenskij, A; Pták, P, Quantum logics with the Riesz interpolation property, Math. Nachr., 271, 10-14, (2004) · Zbl 1051.03052 · doi:10.1002/mana.200310178
[11] Dvurečenskij, A., Pulmannová, S.: New Trends in quantum structures, p 541 + xvi. Kluwer Academic Publication, Dordrecht, Ister Science, Bratislava (2000) · Zbl 0987.81005 · doi:10.1007/978-94-017-2422-7
[12] Foulis, DJ; Bennett, MK, Effect algebras and unsharp quantum logics, Found. Phys., 24, 1325-1346, (1994) · Zbl 1213.06004 · doi:10.1007/BF02283036
[13] Foulis, DJ; Greechie, RJ; Rüttimann, GT, Filters and supports in orthoalgebras, Inter. J. Theor. Phys., 31, 789-807, (1992) · Zbl 0764.03026 · doi:10.1007/BF00678545
[14] Gudder, SP, Uniqueness and existence properties of bounded observables, Pac. J. Math., 19, 81-93, (1966) · Zbl 0149.23603 · doi:10.2140/pjm.1966.19.81
[15] Halmos, P.R.: Measure theory. Springer-Verlag, Berlin (1974) · Zbl 0283.28001
[16] Jenča, G, Blocks of homogeneous effect algebras, Bull. Austral. Math. Soc., 64, 81-98, (2001) · Zbl 0985.03063 · doi:10.1017/S0004972700019705
[17] Jenča, G, Sharp and meager elements in orthocomlete homogeneous effect algebras, Order, 27, 41-61, (2010) · Zbl 1193.03084 · doi:10.1007/s11083-009-9137-5
[18] Jenča, G; Riečanová, Z, On sharp elements in lattice ordered effect algebras, Busefal, 80, 24-29, (1999)
[19] Jenčová, A; Pulmannová, S; Vinceková, E, Sharp and fuzzy observables on effect algebras, Inter. J. Theor. Phys., 47, 125-148, (2008) · Zbl 1139.81006 · doi:10.1007/s10773-007-9396-0
[20] Jenčová, A; Pulmannová, S; Vinceková, E, Observables on σ-MV-algebras and σ-lattice effect algebras, Kybernetika, 47, 541-559, (2011) · Zbl 1237.81008
[21] Ji, W, Characterization of homogeneity in orthocomplete atomic effect algebras, Fuzzy Sets Syst., 236, 113-121, (2014) · Zbl 1315.03122 · doi:10.1016/j.fss.2013.06.005
[22] Kallenberg, O.: Foundations of modern probability. Springer-Verlag, Berlin Heidelberg (1997) · Zbl 0892.60001
[23] Mundici, D, Tensor products and the loomissikorski theorem for MV-algebras, Advan. Appl Math., 22, 227-248, (1999) · Zbl 0926.06004 · doi:10.1006/aama.1998.0631
[24] Niederle, J; Paseka, J, Homogeneous orthocomplete effect algebras are covered by MV-algebras, Fuzzy Sets Syst., 210, 89-101, (2013) · Zbl 1268.06009 · doi:10.1016/j.fss.2012.07.009
[25] Pták, P., Pulmannová, S.: Orthomodular structures as quantum logics. VEDA and Kluwer Academic Publication, Bratislava and Dordrecht (1991) · Zbl 0743.03039
[26] Pulmannová, A, A quantum logics description of quantum measurements, Tatra Mountains Math. Publ., 3, 89-100, (1993) · Zbl 0920.03065
[27] Ravindran, K.: On a structure theory of effect algebras. PhD thesis, Kansas State University, Manhattan (1996)
[28] Schröder, BSW, On three notions of orthosummability in orthoalgebras, Inter. J. Theor. Phys., 38, 3305-3313, (1999) · Zbl 0957.03061 · doi:10.1023/A:1026698619399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.