×

A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. (English) Zbl 1394.76078

Summary: The current paper establishes the computational efficiency and accuracy of the RBF-FD method for large-scale geoscience modeling with comparisons to state-of-the-art methods as high-order discontinuous Galerkin and spherical harmonics, the latter using expansions with close to 300,000 bases. The test cases are demanding fluid flow problems on the sphere that exhibit numerical challenges, such as Gibbs phenomena, sharp gradients, and complex vortical dynamics with rapid energy transfer from large to small scales over short time periods. The computations were possible as well as very competitive due to the implementation of hyperviscosity on large RBF stencil sizes (corresponding roughly to 6th to 9th order methods) with up to \(O(10^{5})\) nodes on the sphere. The RBF-FD method scaled as \(O(N)\) per time step, where \(N\) is the total number of nodes on the sphere. In Appendix A, guidelines are given on how to chose parameters when using RBF-FD to solve hyperbolic PDEs.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

chammp
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Baumgardner, J.; Frederickson, P., Icosehedral discretization of the two-sphere, SIAM J. Sci. Comput., 22, 1107-1115 (1985) · Zbl 0601.65084
[2] Bayona, V.; Moscoso, M.; Carretero, M.; Kindelan, M., RBF-FD formulas and convergence properties, J. Comp. Phys., 229, 8281-8295 (2010) · Zbl 1201.65038
[3] Bentley, J. L., Multidimensional binary search trees used for associative searching, Commun. ACM, 18, 509-517 (1975) · Zbl 0306.68061
[4] S. Blaise, A. St-Cyr, A dynamic hp-adaptive discontinuous Galerkin method for shallow water flows on the sphere with application to a global tsunami simulation, Mon. Weather Rev., in press, http://dx.doi.org/10.1175/MWR-D-11-00038.1; S. Blaise, A. St-Cyr, A dynamic hp-adaptive discontinuous Galerkin method for shallow water flows on the sphere with application to a global tsunami simulation, Mon. Weather Rev., in press, http://dx.doi.org/10.1175/MWR-D-11-00038.1
[5] Bollig, E.; Flyer, N.; Erlebacher, G., A multi-CPU/GPU implementation of RBF-generated finite differences for PDEs on a sphere, AGU, IN77 (2011)
[6] E. Bollig, N. Flyer, G. Erlebacher, Using radial basis function finite difference (RBF-FD) for PDE solutions on the GPU, J. Comput. Phys., submitted for publication.; E. Bollig, N. Flyer, G. Erlebacher, Using radial basis function finite difference (RBF-FD) for PDE solutions on the GPU, J. Comput. Phys., submitted for publication.
[7] Bonaventura, L.; Ringler, T., Analysis of discrete shallow-water models on geodesic delaunay grids with \(c\)-type staggering, Mon. Weather Rev., 133, 2351-2373 (2005)
[8] Cecil, T.; Qian, J.; Osher, S., Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, J. Comput. Phys., 196, 327-347 (2004) · Zbl 1053.65086
[9] Chandhini, G.; Sanyasiraju, Y. V.S. S., Local RBF-FD solutions for steady convection-diffusion problems, Int. J. Numer. Methods Eng., 72, 352-378 (2007) · Zbl 1194.76174
[10] Chinchapatnam, P. P.; Djidjeli, K.; Nair, P. B.; Tan, M., A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations, Proc. IMechE Part M J. Eng. Maritime Env., 223, 275-290 (2009)
[11] Davydov, O.; Oanh, D. I., Adaptive meshless centres and RBF stencils for Poisson equation, J. Comp. Phys., 230, 287-304 (2011) · Zbl 1207.65136
[12] Ding, H.; Shu, C.; Tang, D. B., Error estimates of local multiquadric-based differential quadrature (LMQDQ) method through numerical experiments, Int. J. Numer. Methods Eng., 63, 1513-1529 (2005) · Zbl 1089.65119
[13] Driscoll, T. A.; Fornberg, B., Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43, 413-422 (2002) · Zbl 1006.65013
[14] Fasshauer, G. E., Meshless approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6 (2007), World Scientific Publishers: World Scientific Publishers Singapore · Zbl 1323.74106
[15] Flyer, N.; Fornberg, B., Radial basis functions: developments and applications to planetary scale flows, Comput. Fluids, 26, 23-32 (2011) · Zbl 1272.65078
[16] Flyer, N.; Lehto, E., Rotational transport on a sphere: local node refinement with radial basis functions, J. Comput. Phys., 229, 1954-1969 (2010) · Zbl 1303.76128
[17] Flyer, N.; Wright, G. B., Transport schemes on a sphere using radial basis functions, J. Comput. Phys., 226, 1059-1084 (2007) · Zbl 1124.65097
[18] Flyer, N.; Wright, G. B., A radial basis function method for the shallow water equations on a sphere, Proc. Roy. Soc. A, 465, 1949-1976 (2009) · Zbl 1186.76664
[19] Fornberg, B.; Driscoll, T. A.; Wright, G.; Charles, R., Observations on the behavior of radial basis functions near boundaries, Comput. Math. Appl., 43, 473-490 (2002) · Zbl 0999.65005
[20] Fornberg, B.; Larsson, E.; Flyer, N., Stable computations with gaussian radial functions, SIAM J. Sci. Comput., 33, 2, 869-892 (2011) · Zbl 1227.65018
[21] Fornberg, B.; Lehto, E., Stabilization of RBF-generated finite difference methods for convective PDEs, J. Comput. Phys., 230, 2270-2285 (2011) · Zbl 1210.65154
[22] Fornberg, B.; Piret, C., A stable algorithm for flat radial basis functions on a sphere, SIAM J. Sci. Comput., 200, 178-192 (2007)
[23] Fornberg, B.; Piret, C., On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere, J. Comput. Phys., 227, 2758-2780 (2008) · Zbl 1135.65039
[24] Fornberg, B.; Wright, G., Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl., 48, 853-867 (2004) · Zbl 1072.41001
[25] Fornberg, B.; Zuev, J., The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54, 379-398 (2007) · Zbl 1128.41001
[26] Galewsky, J.; Scott, R. K.; Polvani, L. M., An initial-value problem for testing numerical models of the global shallow-water equations, Tellus, 56A, 429-440 (2004)
[27] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications (1977), SIAM Press: SIAM Press Philadelphia, PA · Zbl 0412.65058
[28] Hesthaven, J. S.; Gottlieb, S.; Gottlieb, D., Spectral Methods for Time-Dependent Problems (2007), Cambridge University Press: Cambridge University Press UK · Zbl 1111.65093
[29] Nair, R. D., Diffusion experiments with a global discontinuous Galerkin shallow-water model, Mon. Weather Rev., 137, 3339-3350 (2009)
[30] Nair, R. D.; Thomas, S. J.; Loft, R. D., A discontinuous Galerkin global shallow water model, Mon. Weather Rev., 133, 876-888 (2005)
[31] Pudykiewicz, J. A., On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid, J. Comput. Phys., 230, 1956-1991 (2011) · Zbl 1391.76061
[32] Shan, Y. Y.; Shu, C.; Lu, Z. L., Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary, Comput. Model. Eng. Sci., 25, 99-113 (2008)
[33] Shu, C.; Ding, H.; Yeo, K. S., Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 192, 941-954 (2003) · Zbl 1025.76036
[34] Spotz, W. F.; Taylor, M. A.; Swarztrauber, P. N., Fast shallow water equation solvers in latitude-longitude coordinates, J. Comput. Phys., 145, 432-444 (1998) · Zbl 0928.76078
[35] St-Cyr, A.; Jablonowski, C.; Dennis, J. M.; Tufo, H. M.; Thomas, S. J., A comparison of two shallow-water models with nonconforming adaptive grids, Mon. Weather Rev., 136, 1898-1922 (2008)
[36] Stevens, D.; Power, H.; Lees, M.; Morvan, H., The use of PDE centers in the local RBF Hermitean method for 3D convective-diffusion problems, J. Comput. Phys., 228, 4606-4624 (2009) · Zbl 1167.65447
[37] Takacs, L. L., Effects of using a posteriori methods for the conservation of integral invariants, Mon. Weather Rev., 116, 525-545 (1988)
[38] Taylor, M.; Tribbia, J.; Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92-108 (1997) · Zbl 0868.76072
[39] Thuburn, J.; Li, Y., Numerical simulation of Rossby-Haurwitz waves, Tellus, 52A, 181-189 (2000)
[40] Tolstykh, A. I., On using radial basis functions in a “finite difference mode” with applications to elasticity problems, Comput. Mech., 33, 68-79 (2003) · Zbl 1063.74104
[41] A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, in: Proceedings of the 16th IMACS World Congress, vol. 228, Lausanne, 2000, pp. 4606-4624.; A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, in: Proceedings of the 16th IMACS World Congress, vol. 228, Lausanne, 2000, pp. 4606-4624.
[42] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211-224 (1992) · Zbl 0756.76060
[43] Womersley, R. S.; Sloan, I. H., How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., 23, 195-226 (2001) · Zbl 0980.41003
[44] R.S. Womersley, I.H. Sloan, Interpolation and cubature on the sphere, Website, 2003, <http://web.maths.unsw.edu.au/ rsw/Sphere/>; R.S. Womersley, I.H. Sloan, Interpolation and cubature on the sphere, Website, 2003, <http://web.maths.unsw.edu.au/ rsw/Sphere/>
[45] G.B. Wright, Radial basis function interpolation: numerical and analytical developments, Ph.D. thesis, University of Colorado, Boulder, 2003.; G.B. Wright, Radial basis function interpolation: numerical and analytical developments, Ph.D. thesis, University of Colorado, Boulder, 2003.
[46] Wright, G. B.; Flyer, N.; Yuen, D. A., A hybrid radial basis function – pseudospectral method for thermal convection in a 3D spherical shell, Geophys. Geochem. Geosyst., 11, 7, Q07003 (2010)
[47] Wright, G. B.; Fornberg, B., Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys., 212, 99-123 (2006) · Zbl 1089.65020
[48] Yang, C.; Cai, X. C., Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere, J. Comput. Phys., 230, 2523-2539 (2011) · Zbl 1316.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.