Characterization of between-group inequality of longevity in European union countries. (English) Zbl 1394.62140

Summary: Comparisons of differential survival by country are useful in many domains. In the area of public policy, they help policymakers and analysts assess how much various groups benefit from public programs, such as social security and health care. In financial markets and especially for actuaries, they are important for designing annuities and life insurance products. This paper presents a method for clustering information about differential mortality by country. The approach is then used to group mortality surfaces for European Union (EU) countries. The aim of this paper is to measure between-group inequality in mortality experience in EU countries through a range of mortality indicators. Additionally, the indicators permit the characterization of each group. It is important to take into account characteristics such as sex; therefore, this study differentiates between males and females in order to detect whether their patterns and characterizations are different. It is concluded that there are clear differences in mortality between the east and west of the EU that are more important than the traditional south-north division, with a significant disadvantage for Eastern Europe, and especially for males in Baltic countries. We find that the mortality indicators have evolved in all countries in such a way that the gap between groups has been maintained, both in terms of the differences in mortality levels and variability.


62P05 Applications of statistics to actuarial sciences and financial mathematics
62H25 Factor analysis and principal components; correspondence analysis
91B30 Risk theory, insurance (MSC2010)
91D20 Mathematical geography and demography
Full Text: DOI Link


[1] Ahcan, A.; Medved, D.; Olivieri, A.; Pitacco, E., Forecasting mortality for small populations by mixing mortality data, Insurance Math. Econom., 54, 1, 12-27, (2014)
[2] Andreev, L., 2004. Analysis of population pyramids. 4. fusion of socio-demographic variables
[3] Booth, H.; Maindonald, J.; Smith, L., Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud., 56, 3, 325-336, (2002)
[4] Breiman, L., Random forests, Mach. Learn., 45, 1, 5-32, (2001) · Zbl 1007.68152
[5] Breiman, L.; Friedman, J.; Olshen, R.; Stone, C., Classification and Regression Trees, (1984), Wadsworth International Group Belmont, California, USA · Zbl 0541.62042
[6] Camarda, C. G., Mortalitysmooth: an R package for smoothing Poisson counts with P-splines, J. Stat. Softw., 50, 1, 1-24, (2012)
[7] Canudas-Romo, V., The modal age at death and the shifting mortality hypothesis, Demogr. Res., 19, 30, 1179-1204, (2008)
[8] Currie, I., On Fitting generalized linear and non-linear models of mortality, Scand. Actuar. J., 2016, 4, 356-383, (2016) · Zbl 1401.91123
[9] Dalstra, J. A.A.; Kunst, A. E.; Geurts, J. J.M.; Frenken, F. J.M.; Mackenbach, J. P., Trends in socioeconomic health inequalities in The Netherlands, 1981-1999, J. Epidemiol. Community Health, 56, 12, 927-934, (2002)
[10] Debón, A.; Martínez-Ruiz, F.; Montes, F., Temporal evolution of some mortality indicators. application to Spanish data, N. Am. Actuar. J., 16, 3, 364-377, (2012)
[11] Debón, A.; Montes, F.; Martínez-Ruiz, F., Statistical methods to compare mortality for a group with non-divergent populations: an application to Spanish regions, Eur. Actuar. J., 1, 2, 291-308, (2011)
[12] Debón, A.; Montes, F.; Mateu, J.; Porcu, E.; Bevilacqua, M., Modelling residuals dependence in dymanic life tables, Comput. Statist. Data Anal., 52, 3, 3128-3147, (2008) · Zbl 1452.62760
[13] Debón, A.; Montes, F.; Puig, F., Modelling and forecasting mortality in Spain, European J. Oper. Res., 189, 3, 624-637, (2008) · Zbl 1142.62419
[14] Debón, A.; Montes, F.; Sala, R., A comparison of parametric models for mortality graduation. application to mortality data of the Valencia region (Spain), Statist. Oper. Res. Trans., 29, 2, 269-287, (2005) · Zbl 1274.62691
[15] Edwards, R.D., 2010. Trends in world inequality in life span since 1970. Technical report, National Bureau of Economic Research
[16] Edwards, R. D.; Tuljapurkar, S., Inequality in life spans and a new perspective on mortality convergence across industrialized countries, Popul. Dev. Rev., 31, 4, 645-674, (2005)
[17] Eurostat, 2016. Statistics explained. Material deprivation statistics - early results
[18] Fukuyama, Y., Sugeno, M., 1989. A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of the 5th Fuzzy System Symposium, vol. 247
[19] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning. Data Mining, Inference, and Prediction, (2001), Springer New York
[20] Hatzopoulos, P.; Haberman, S., Common mortality modeling and coherent forecasts. an empirical analysis of worldwide mortality data, Insurance Math. Econom., 52, 2, 320-337, (2013) · Zbl 1284.91238
[21] Hayter, A. J., The maximum familywise error rate of fisher’s least significant difference test, J. Amer. Statist. Assoc., 81, 396, 1000-1004, (1986) · Zbl 0638.62068
[22] Human Mortality Database, 2015. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), Avaliable at www.mortality.org or www.humanmortality.de, (data downloaded on 01/06/2015)
[23] Jackson, J. E., A User’s Guide to Principal Components, vol. 587, (2005), John Wiley & Sons
[24] Josse, J.; Husson, F., Selecting the number of components in principal component analysis using cross-validation approximations, Comput. Statist. Data Anal., 56, 6, 1869-1879, (2012) · Zbl 1243.62082
[25] Josse, J.; Husson, F., Missmda: A package for handling missing values in multivariate data analysis, J. Stat. Softw., 70, 1, 1-31, (2016)
[26] Keyfitz, N.; Caswell, H., Applied Mathematical Demography, vol. 47, (2005), Springer · Zbl 1104.91063
[27] Lee, R.; Carter, L., Modelling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 419, 659-671, (1992)
[28] Leon, D. A., Trends in European life expectancy: a salutary view, Int. J. Epidemiol., 40, 2, 271-277, (2011)
[29] Li, N.; Lee, R., Coherent mortality forecast for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-593, (2005)
[30] Li, N.; Lee, R.; Tuljapurkar, S., Using the Lee-Carter method to forecast mortality for populations with limited data*, Internat. Statist. Rev., 72, 1, 19-36, (2004) · Zbl 1330.62349
[31] Liaw, A.; Wiener, M., Classification and regression by randomforest, R News, 2, 3, 18-22, (2002)
[32] Mackenbach, J. P., Convergence and divergence of life expectancy in Europe: a centennial view, Eur. J. Epidemiol., 28, 3, 229-240, (2013)
[33] Mackenbach, J. P.; Kunst, A. E.; Cavelaars, A. E.; Groenhof, F.; Geurts, J. J., Socioeconomic inequalities in morbidity and mortality in western Europe. the EU working group on socioeconomic inequalities in health, Lancet, 349, 9066, 1655-1659, (1997)
[34] Meslé, F., Mortality in central and eastern Europe: long-term trends and recent upturns, Demogr. Res., 2, 45-70, (2004)
[35] Meslé, F.; Vallin, J., Mortalité en Europe: la divergence est-ouest, Population, 57, 1, 171-212, (2002)
[36] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2012. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-1
[37] Minton, J.; Shaw, R.; Green, M. A.; Vanderbloemen, L.; Popham, F.; McCartney, G., Visualising and quantifying ‘excess deaths’ in Scotland compared with the rest of the UK and the rest of western Europe, J. Epidemiol. Community Health, 71, 461-467, (2017)
[38] Mitchell, D.; Brockett, P.; Mendoza-Arriaga, R.; Muthuraman, K., Modeling and forecasting mortality rates, Insurance Math. Econom., 52, 2, 275-285, (2013) · Zbl 1284.91259
[39] Mitra, S., A short note on the taeuber paradox, Demography, 15, 4, 621-623, (1978)
[40] O’Donnell, O., Measuring health inequalities in Europe, Measuring Tackling Health Inequal. Across Eur., 15, 3, 10, (2009)
[41] Pal, N. R.; Bezdek, J. C.; Hathaway, R. J., Sequential competitive learning and the fuzzy c-means clustering algorithms, Neural Netw., 9, 5, 787-796, (1996)
[42] Pearson, K., LIII. on lines and planes of closest fit to systems of points in space, Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 11, 559-572, (1901) · JFM 32.0710.04
[43] Qinlan, J., (Programs for Machine Learning, The Morgan Kaufmann Series in Machine Learning, (1993), Morgan Kaufmann)
[44] R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
[45] Reidpath, D. D.; Allotey, P., Infant mortality rate as an indicator of population health, J. Epidemiol. Community Health, 57, 5, 344-346, (2003)
[46] Renshaw, A.; Haberman, S., Lee-Carter mortality forecasting: a parallel generalized linear modelling aproach for england and wales mortality projections, J. Roy. Statist. Soc. Ser. C, 52, 1, 119-137, (2003) · Zbl 1111.62359
[47] Renshaw, A.; Haberman, S., Lee-Carter mortality forecasting with age specific enhancement, Insurance Math. Econom., 33, 2, 255-272, (2003) · Zbl 1103.91371
[48] Renshaw, A.; Haberman, S., On the forecasting of mortality reduction factors, Insurance Math. Econom., 32, 3, 379-401, (2003) · Zbl 1025.62041
[49] Rezaee, M. R.; Lelieveldt, B. P.; Reiber, J. H., A new cluster validity index for the fuzzy c-mean, Pattern Recognit. Lett., 19, 3, 237-246, (1998) · Zbl 0905.68127
[50] Riffe, T., 2015. Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR
[51] Russolillo, M.; Giordano, G.; Haberman, S., Extending the Lee Carter model: a three-way decomposition, Scand. Actuar. J., 2011, 2, 96-117, (2011) · Zbl 1277.62260
[52] Shkolnikov, V.; Andreev, E.; Begun, A., Gini coefficient as a life table function: computation from discrete data, decomposition of differences and empirical examples, Demogr. Res., 8, 11, 305-358, (2003)
[53] Spinakis, A., Anastasiou, G., Panousis, V., Spiliopoulos, K., Palaiologou, S., Yfantopoulos, J., 2011. Expert review and proposals for measurement of health inequalities in the European Union. Technical report, European Commission Directorate General for Health and Consumers, Luxembourg. ISBN 978-92-79-18529-8
[54] Tuljapurkar, S.; Edwards, R. D., Variance in death and its implications for modeling and forecasting mortality, Demogr. Res., 24, 21, 497-526, (2011)
[55] Vaupel, J. W.; Zhang, Z.; van Raalte, A. A., Life expectancy and disparity: an international comparison of life table data, BMJ Open, 1, 1, e000128, (2011)
[56] Villegas, A. M.; Haberman, S., On the modeling and forecasting of socioeconomic mortality differentials: an application to deprivation and mortality in england, N. Am. Actuar. J., 18, 1, (2014)
[57] Xie, X. L.; Beni, G., A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 13, 8, 841-847, (1991)
[58] Yang, S. S.; Yue, J. C.; Huang, H.-C., Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models, Insurance Math. Econom., 46, 1, 254-270, (2010) · Zbl 1231.91254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.