×

zbMATH — the first resource for mathematics

Singular rational curves with points of nearly-maximal weight. (English) Zbl 1394.14019
In this review, for the sake of simplicity, a curve \(C\) is a rational integral and projective one-dimensional \(\mathbb C\)-scheme of arithmetic genus \(g\), with a unique singular point \(P\), which is unibranch; the authors consider sometimes a larger class of curves. The integral closure of \(\mathcal O_{C,P}\) is a discrete valuation ring \(V\). Let \(v\) be the valuation defined by \(V\); \(S(P):=v(\mathcal O_{C,P})\) is the value semigroup of \(P\). Instead of using the usual notion of weight \(w(P)\) of \(P\), namely the weight of the numerical semigroup \(S(P)\), the authors define a weight \(w(P)\) of \(P\), using pole orders of differentials, similarly as S. Kato [Math. Ann. 239, 141–147 (1979; Zbl 0401.30037)]. For a numerical semigroup, F. Torres [Manuscr. Math. 83, 39–58 (1994; Zbl 0838.14025); Semigroup forum 55, 364–379 (1997; Zbl 0931.14017] introduced the notion of being \(\kappa\)-hyperelliptic; in this paper, the authors say that \(P\) is hyperelliptic if \(S(P)\) is \(0\)-hyperelliptic, i.e., \(2\in S(P)\), and that \(P\) is bielliptic if \(P\) is 1-hyperelliptic, i.e., \(4\) and \(6\) are the smallest integers in \(S(P)\). In Theorem 2, resp. Theorem 4, the case that \(P\) is hyperelliptic resp. bielliptic is characterized by a condition on the weight \(w(P)\). Section 2 starts with a review of linear series on \(C\). \(g^r_d\) denotes a linear series of degree \(d\) and dimension \(r\); \(\text{gon}(C)\) is the gonality of \(C\), i.e., the smallest \(k\) for which \(C\) carries a \(g^1_k\). In Theorem 2.2 it is shown that \(\text{gon}(C)\leq g+1\). For a particular class of curves \(C\), it is shown that \(C\) carries a \(g^1_k\) with a non-removable base-point and that \(C\) lies on a scroll. The curve \(C\) is called hyperelliptic whenever a degree-\(2 \) morphisms \(C\to\mathbb P^1\) exists, and it is called bielliptic whenever a degree-\(2\) morphism \(C\to E\) exists where \(E\) is an elliptic curve. In section 3 the authors study hyperelliptic and bielliptic curves. They obtain a partial classification of these curves.

MSC:
14H20 Singularities of curves, local rings
14H45 Special algebraic curves and curves of low genus
14H51 Special divisors on curves (gonality, Brill-Noether theory)
20M20 Semigroups of transformations, relations, partitions, etc.
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J., Geometry of algebraic curves, (1985), Springer · Zbl 0559.14017
[2] Barucci, V.; D’Anna, M.; Fröberg, R., Analytically unramified one-dimensional semi local rings and their value semigroups, J. Pure Appl. Algebra, 147, 215-254, (2000) · Zbl 0963.13021
[3] Barucci, V.; Fröberg, R., One-dimensional almost Gorenstein rings, J. Algebra, 188, 2, 418-442, (1997) · Zbl 0874.13018
[4] Bras-Amorós, M.; de Mier, A., Representation of numerical semigroups by Dyck paths, Semigroup Forum, 75, 3, 676-681, (2007) · Zbl 1128.20046
[5] Bras-Amorós, M.; Bulygin, S., Towards a better understanding of the semigroup tree, Semigroup Forum, 79, 3, 561-574, (2009) · Zbl 1230.05018
[6] Contiero, A.; Feital, L.; Martins, R. V., MAX Noether’s theorem for integral curves · Zbl 1386.14112
[7] Coppens, M., Free linear systems on integral Gorenstein curves, J. Algebra, 145, 209-218, (1992) · Zbl 0770.14002
[8] Cox, D.; Kustin, A.; Polini, C.; Ulrich, B., A study of singularities on rational curves via syzygies, Mem. Am. Math. Soc., 222, 1045, (2013) · Zbl 1305.14014
[9] Eisenbud, D.; Koh, J.; Stillman, M., Determinantal equations for curves of high degree, Am. J. Math., 110, 3, 513-539, (1988) · Zbl 0681.14027
[10] Fernández de Bobadilla, J.; Luengo, I.; Melle-Hernández, A.; Némethi, A., On rational cuspidal plane curves, open surfaces, and local singularities, (Singularity Theory, (2007), World Sci. Publ.), 411-442 · Zbl 1124.14026
[11] Feital, L., Gonalidade e o teorema de MAX Noether para curvas não-Gorenstein, (2013), Univ. Federal de Minas Gerais, viewable at
[12] Feital, L.; Martins, R. V., Gonality of non-Gorenstein curves of genus five, Bull. Braz. Math. Soc., 45, 4, 649-670, (2014) · Zbl 1308.14029
[13] Flenner, H.; Zaidenberg, M., Rational cuspidal plane curves of type \((d, d - 3)\), Math. Nachr., 210, 93-110, (2000) · Zbl 0948.14020
[14] Kato, T., Non-hyperelliptic Weierstrass points of maximal weight, Math. Ann., 239, 141-147, (1979) · Zbl 0401.30037
[15] Koras, M.; Palka, K., The coolidge-Nagata conjecture · Zbl 1393.14029
[16] Martins, R. V., On trigonal non-Gorenstein curves with zero maroni invariant, J. Algebra, 275, 453-470, (2004) · Zbl 1060.14036
[17] Kleiman, S.; Martins, R. V., The canonical model of a singular curve, Geom. Dedic., 139, 139-166, (2009) · Zbl 1172.14019
[18] Moe, T. Karoline, Rational cuspidal curves, (2008), Univ. Oslo, master’s thesis
[19] Orevkov, S. Y., On rational cuspidal curves I. sharp estimate for degree via multiplicities, Math. Ann., 324, 4, 657-673, (2002) · Zbl 1014.14010
[20] Oliveira, G.; Torres, F.; Villanueva, J., On the weight of numerical semigroups, J. Pure Appl. Algebra, 214, 1955-1961, (2010) · Zbl 1194.14048
[21] Piontkowski, J., On the number of cusps of rational cuspidal plane curves, Exp. Math., 16, 2, 251-255, (2007) · Zbl 1147.14011
[22] Rosa, R.; Stöhr, K.-O., Trigonal Gorenstein curves, J. Pure Appl. Algebra, 174, 187-205, (2002) · Zbl 1059.14038
[23] Rosenlicht, M., Equivalence relations on algebraic curves, Ann. Math., 56, 169-191, (1952) · Zbl 0047.14503
[24] Schreyer, F.-O., Syzygies of canonical curves and special linear systems, Math. Ann., 275, 105-137, (1986) · Zbl 0578.14002
[25] Stöhr, K.-O., On the poles of regular differentials of singular curves, Bull. Braz. Math. Soc., 24, 105-135, (1993) · Zbl 0788.14020
[26] Tono, K., On the number of cusps of cuspidal plane curves, Math. Nachr., 278, 1-2, 216-221, (2005) · Zbl 1069.14029
[27] Torres, F., Weierstrass points and double coverings of curves with application: symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscr. Math., 83, 39-58, (1994) · Zbl 0838.14025
[28] Torres, F., On γ-hyperelliptic numerical semigroups, Semigroup Forum, 55, 364-379, (1997) · Zbl 0931.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.