×

zbMATH — the first resource for mathematics

Improved results on stability of linear systems with time-varying delays via Wirtinger-based integral inequality. (English) Zbl 1393.93104
Summary: In this paper, the problem of stability analysis for linear systems with time-varying delays is considered. By the consideration of new augmented Lyapunov functionals, improved delay-dependent stability criteria for asymptotic stability of the system are proposed for two cases of conditions on time-varying delays with the framework of linear matrix inequalities (LMIs), which can be solved easily by various efficient convex optimization algorithms. The enhancement of the feasible region of the proposed criteria is shown via three numerical examples by the comparison of maximum delay bounds.

MSC:
93D20 Asymptotic stability in control theory
93C05 Linear systems in control theory
90C25 Convex programming
Software:
SeDuMi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Niculescu, S. I., Delay effects on stability: A robust control approach, (2001), Springer Berlin
[2] Hale, J.; Lunel, S. M.V., Introduction to functional differential equations, (1993), Springer New York · Zbl 0787.34002
[3] Kolmanovskii, V. B.; Myshkis, A., Applied theory of functional differential equations, (1992), Kluwer Academic Publishers Boston
[4] Richard, J. P., Time-delay systemsan overview of some recent advances and open problems, Automatica, 39, 1667-1694, (2003) · Zbl 1145.93302
[5] Souza, Fernando O., Further improvement in stability criteria for linear systems with interval time-varying delay, IET Control Theory Appl., 7, 440-446, (2013)
[6] Souza, Fernando O.; Palhares, Reinaldo M., New delay-interval stability condition, Int. J. Syst. Sci., 45, 300-306, (2014) · Zbl 1307.93310
[7] Li, X.; Gao, H.; Yu, X., A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 41, 1275-1286, (2011)
[8] Xia, Y.; Liu, G. P.; Shi, P.; Rees, D.; Thomas, E. J.C., New stability and stabilization conditions for systems with time-delay, Int. J. Syst. Sci., 38, 17-24, (2007) · Zbl 1111.93052
[9] Li, X.; Gao, H., A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis, IEEE Trans. Autom. Control, 56, 2172-2178, (2011) · Zbl 1368.93102
[10] Xu, S.; Lam, J., A survey of linear matrix inequality techniques in stability analysis of delay systems, Int. J. Syst. Sci., 39, 1095-1113, (2008) · Zbl 1156.93382
[11] Park, P. G.; Ko, J. W., Stability and robust stability for systems with a time-varying delay, Automatica, 43, 1855-1858, (2007) · Zbl 1120.93043
[12] Park, P. G., A delay-dependent stability criterion for systems with uncertain linear state-delayed systems, IEEE Trans. Autom. Control, 35, 876-877, (1999) · Zbl 0957.34069
[13] Qian, W.; Cong, S.; Sun, Y.; Fei, S., Novel robust stability criteria for uncertain systems with time-varying delay, Appl. Math. Comput., 215, 866-872, (2009) · Zbl 1192.34087
[14] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems, (2003), Birkhäuser Boston · Zbl 1039.34067
[15] Park, P. G.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 235-238, (2011) · Zbl 1209.93076
[16] Park, M. J.; Kwon, O. M.; Park, Ju H.; Lee, S. M., A new augmented Lyapunov-krasovskii functional approach for stability of linear systems with time-varying delays, Appl. Math. Comput., 217, 7197-7209, (2011) · Zbl 1219.93106
[17] Ariba, Y.; Gouaisbaut, F., An augmented model for robust stability analysis of time-varying delay systems, Int. J. Control, 82, 1616-1626, (2009) · Zbl 1190.93076
[18] Kim, J. H., Note on stability of linear systems with time-varying delay, Automatica, 47, 2118-2121, (2011) · Zbl 1227.93089
[19] Sun, J.; Liu, G. P.; Chen, J., Delay-dependent stability and stabilization of neutral time-delay systems, Int. J. Robust Nonlinear Control, 15, 1364-1375, (2009) · Zbl 1169.93399
[20] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 466-470, (2010) · Zbl 1205.93139
[21] J. Sun, G.P. Liu, J. Chen, Further results on stability criteria for linear systems with time-varying delay, in: 2008 IEEE International Conference on Systems, Man and Control, 2008, pp. 2736-2740.
[22] Kwon, O. M.; Park, Ju H., On improved delay-dependent robust control for uncertain time-delay systems, IEEE Trans. Autom. Control, 49, 1991-1995, (2004) · Zbl 1365.93370
[23] Wu, M.; He, Y.; She, J.-H.; Liu, H.-P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 1435-1439, (2004) · Zbl 1059.93108
[24] He, Y.; Wang, Q. G.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 371-376, (2007) · Zbl 1111.93073
[25] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 2860-2866, (2013) · Zbl 1364.93740
[26] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia · Zbl 0816.93004
[27] S. Xu, J. Lam, B. Zhang, Y. Zou, New insight into delay-dependent stability of time-delay systems, Int. J. Robust Nonlinear Control, http://dx.doi.org/10.1002/rnc.3120 · Zbl 1312.93077
[28] S. Xu, J. Lam, B. Zhang, Y. Zou, A new result on the delay-dependent stability of discrete systems with time-varying delays, Int. J. Robust Nonlinear Control, http://dx.doi.org/10.1002/rnc.3006 · Zbl 1302.93168
[29] J. Löfberg, YAPLMI: a toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, 2004.
[30] Sturm, J. F., Using sedumi 10.2, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 625-653, (1999) · Zbl 0973.90526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.