zbMATH — the first resource for mathematics

A new method for designing distributed reduced-order functional observers of interconnected time-delay systems. (English) Zbl 1393.93017
Summary: This paper reports a new method for designing distributed reduced-order functional observers of a class of interconnected systems with time delays. The systems under consideration belong to a class of large-scale systems where each system is formed by a number of interconnected subsystems. Moreover, the interconnections and the states of the local subsystems are subject to heterogeneous time delays. The novel contribution of this paper lies in the development of new coordinate state transformations, which are used to transform the interconnected subsystems into decoupled subsystems. Most significantly, each decoupled subsystem does not contain any time delay in the state vector. Moreover, each decoupled subsystem is expressed in an observable canonical form, with time delays only appearing in the inputs and outputs of the system. Due to this novel structure, a reduced-order functional observer for each decoupled subsystem can be easily designed to estimate the unmeasurable local state vector. The designed observers for the local subsystems do not need to exchange the state estimates amongst themselves, and therefore, each observer for each local subsystem can be designed independently. Because of the state transformations, the designed observers have a more general structure than any of the existing distributed functional observers available in the literature. Numerical examples are given to illustrate the effectiveness and advantages of our results.

93A15 Large-scale systems
93B17 Transformations
93B11 System structure simplification
93B07 Observability
Full Text: DOI
[1] Valcher, M. E.; Misra, P., On the stabilizability and consensus of positive homogeneous multi-agent dynamical systems, IEEE Trans. Autom. Control, 59, 7, 1936-1941, (2014) · Zbl 1360.93614
[2] Ebihara, Y.; Peaucelle, D.; Arzelier, D., Analysis and synthesis of interconnected positive systems, IEEE Trans. Autom. Control, 62, 652-667, (2017) · Zbl 1364.93313
[3] Rantzer, A., Scalable control of positive systems, Eur. J. Control, 24, 72-80, (2015) · Zbl 1360.93072
[4] Yan, X. G.; Spurgeon, S. K.; Edwards, C., Global decentralised static output feedback sliding mode control for interconnected time-delay systems, IET Control Theory Appl., 6, 2, 192-202, (2012)
[5] Anand, S.; Fernandes, B. G.; Guerrero, J. M., Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids, IEEE Trans. Power Electron., 28, 4, 1900-1913, (2013)
[6] Yoo, S. J., Approximation-based decentralized adaptive tracking for a class of arbitrarily switched interconnected non-affine nonlinear systems, J. Frankl. Inst., 354, 2, 834-851, (2017) · Zbl 1355.93030
[7] Konishi, K.; Sugitani, Y.; Hara, N., Dynamics of DC bus networks and their stabilization by decentralized delayed feedback, Phys. Rev. E, 91, 012911, (2015)
[8] Siljak, D., Decentralized control of complex systems, (1991), Academic Press Inc. London · Zbl 0728.93004
[9] Mahmoud, M. S., Decentralized systems with design constraints, Springer-Verlag London Limited, (2011) · Zbl 1223.93061
[10] Wang, T.; Gao, H.; Qiu, J., A combined fault tolerant and predictive control for network-based industrial processes, IEEE Trans. Ind. Electron., 63, 4, 2529-2536, (2016)
[11] Wang, T.; Qiu, J.; Gao, H.; Wang, C., Network-based fuzzy control for nonlinear industrial processes with predictive compensation strategy, IEEE Trans. Syst., Man, Cybern. Syst., 47, 8, 2137-2147, (2017)
[12] Wang, T.; Qiu, J.; Fu, S.; Ji, W., Distributed fuzzy h_∞ filtering for nonlinear multirate networked double-layer industrial processes, IEEE Trans. Ind. Electron., 64, 6, 5203-5211, (2017)
[13] Li, L.; Ding, S. X.; Qiu, J.; Yang, Y., Real-time fault detection approach for nonlinear systems and its asynchronous t-s fuzzy observer-based implementation, IEEE Trans. Cybern., 47, 2, 283-294, (2017)
[14] Li, L.; Ding, S. X.; Qiu, J.; Yang, Y.; Zhang, Y., Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst., 24, 6, 1320-1333, (2016)
[15] Swarnakar, A.; Marquez, H. J.; Chen, T., A new scheme on robust observer-based control design for interconnected systems with application to an industrial utility boiler, IEEE Trans. Control Syst. Technol., 16, 3, 539-547, (2008)
[16] Guinaldon, M.; Snchez, J.; Dormido, R.; Dormido, S., Distributed control for large-scale systems with adaptive event-triggering, J. Franklin Inst., 353, 3, 735-756, (2016) · Zbl 1395.93369
[17] Mahmud, M.; Pota, H.; Hossain, M., Full-order nonlinear observer-based excitation controller design for interconnected power systems via exact linearization approach, Int. J. Electr. Power Energy Syst., 41, 1, 54-62, (2012)
[18] Pham, T. N.; Trinh, H.; Hien, L. V., Load frequency control of power systems with electric vehicles and diverse transmission links using distributed functional observers, IEEE Trans. Smart Grid, 7, 1, 238-252, (2016)
[19] Abdel-Jabbar, N.; Kravaris, C.; Carnahan, B., A partially decentralized state observer and its parallel computer implementation, Ind. Eng. Chem. Res., 37, 7, 2741-2760, (1998)
[20] Ali, J. M.; Hoang, N. H.; Hussain, M. A.; Dochain, D., Review and classification of recent observers applied in chemical process systems, Comput. Chem. Eng., 76, 27-41, (2015)
[21] Lee, T. H.; Lakshmanan, S.; Park, J. H.; Balasubramaniam, P., State estimation for genetic regulatory networks with mode-dependent leakage and time-varying delays and Markovian jumping parameters, IEEE Trans. NanoBiosci., 12, 4, 363-375, (2013)
[22] Yan, X. G.; Spurgeon, S. K., Delay-independent decentralised output feedback control for large-scale systems with nonlinear interconnections, Int. J. Control, 87, 3, 473-482, (2014) · Zbl 1317.93215
[23] M. Kordestani, A.A. Safavi, N. Sharafi, M. Saif, Novel multiagent model-predictive control performance indices for monitoring of a large-scale distributed water system, IEEE Syst. J. doi:10.1109/JSYST.2016.2628774.
[24] Sharma, A.; Srivastava, S. C.; Chakrabarti, S., An iterative multiarea state estimation approach using area slack bus adjustment, IEEE Syst. J., 10, 1, 69-77, (2016)
[25] Wei, Y.; Wang, M.; Qiu, J., New approach to delay-dependent h_∞ filtering for discrete-time Markovian jump systems with time-varying delay and incomplete transition descriptions, IET Control Theory Appl., 7, 5, 684-696, (2013)
[26] Wei, Y.; Qiu, J.; Karimi, H. R., Quantized h_∞ filtering for continuous-time Markovian jump systems with deficient mode information, Asian J. Control, 17, 5, 1914-1923, (2015) · Zbl 1333.93245
[27] Trinh, H.; Fernando, T., Functional observers for dynamical systems, Springer-Verlag, Berlin Heidelberg, (2012) · Zbl 1244.93002
[28] Aldeen, M.; Marsh, J., Decentralised observer-based control scheme for interconnected dynamical systems with unknown inputs, IEE Proc. Control Theory Appl., 146, 5, 349-358, (1999)
[29] Arbel, A.; Tse, E., Observer design for large-scale linear systems, IEEE Trans. Autom. Control, 24, 3, 469-476, (1979) · Zbl 0409.93023
[30] Hou, M.; Muller, P., Design of decentralized linear state function observers, Automatica, 30, 11, 1801-1805, (1994) · Zbl 0819.93013
[31] Saif, M.; Guan, Y., Decentralized state estimation in large-scale interconnected dynamical systems, Automatica, 28, 1, 215-219, (1992)
[32] Sundareshan, M. K.; Elbanna, R. M., Design of decentralized observation schemes for large-scale interconnected systems: some new results, Automatica, 26, 4, 789-796, (1990) · Zbl 0719.93007
[33] Trinh, H.; Aldeen, M., Distributed state observer scheme for large-scale interconnected systems, IEE Proc. Control Theory Appl., 145, 3, 331-337, (1998)
[34] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., New results on h_∞ dynamic output feedback control for Markovian jump systems with time-varying delay and defective mode information, Optim. Control Appl. Meth., 35, 656-675, (2014) · Zbl 1305.93184
[35] Xiao, X. S.; Mao, Z., Decentralized guaranteed cost stabilization of time-delay large-scale systems based on reduced-order observers, J. Franklin Inst., 348, 9, 2689-2700, (2011) · Zbl 1239.93109
[36] Bakule, L., Decentralized control: an overview, Annu. Rev. Control, 32, 1, 87-98, (2008)
[37] Leong, W. Y.; Trinh, H.; Hien, L. V., An LMI-based functional estimation scheme of large-scale time-delay systems with strong interconnections, J. Franklin Inst., 353, 11, 2482-2510, (2016) · Zbl 1347.93038
[38] Leong, W. Y.; Trinh, H.; Fernando, T., A practical functional observer scheme for interconnected time-delay systems, Int. J. Control, 88, 10, 1963-1973, (2015) · Zbl 1334.93038
[39] Huong, D. C.; Trinh, H., Method for computing state transformations of time-delay systems, IET Control Theory Appl., 9, 16, 2405-2413, (2015)
[40] Huong, D. C.; Trinh, H., New state transformations of time-delay systems with multiple delays and their applications to state observer design, J. Franklin Inst., 353, 14, 3487-3523, (2016) · Zbl 1347.93067
[41] Gu, K.; Zhang, Y.; Xu, S., Small gain problem in coupled differential-difference equations, time-varying delays, and direct Lyapunov method, Int. J. Robust. Nonlinear Control, 21, 429-451, (2016) · Zbl 1213.93085
[42] Da, F., Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems, IEEE Trans. Neural Netw., 11, 6, 1471-1480, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.