×

Sparse domination theorem for multilinear singular integral operators with \(L^r\)-Hörmander condition. (English) Zbl 1393.42014

Summary: In this note, we show that if \(T\) is a multilinear singular integral operator associated with a kernel satisfies the so-called multilinear \(L^{r}\)-Hörmander condition, then \(T\) can be dominated by multilinear sparse operators.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B15 Multipliers for harmonic analysis in several variables
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] F. Bernicot, D. Frey, and S. Petermichl, Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE 9 (2016), 1079-1113. · Zbl 1344.42009 · doi:10.2140/apde.2016.9.1079
[2] T. A. Bui, J. Conde-Alonso, X. T. Duong, and M. Hormozi, A note on weighted bounds for singular operators with nonsmooth kernels, Studia Math. 236 (2017), 245-269. · Zbl 1366.42014 · doi:10.4064/sm8409-9-2016
[3] T. A. Bui and X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math. 137 (2013), no. 1, 63-75. · Zbl 1266.42019 · doi:10.1016/j.bulsci.2012.04.001
[4] L. Chaffee, R. Torres, and X. Wu, Multilinear weighted norm inequalities under integral type regularity conditions, Harmonic Analysis, Partial Differential Equations and Applications, Part of the series Applied and Numerical Harmonic Analysis, pp. 193-216. · Zbl 1359.42005
[5] J. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou, A sparse domination principle for rough singular integrals, Anal. PDE 10 (2017), 1255-1284. · Zbl 1392.42011 · doi:10.2140/apde.2017.10.1255
[6] J. Conde-Alonso and G. Rey, A pointwise estimate for positive dyadic shifts and some applications, Math. Ann. 365 (2016), 1111-1135. · Zbl 1353.42011 · doi:10.1007/s00208-015-1320-y
[7] D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from \(A_{∞}\) weights and applications, J. Funct. Anal. 213 (2004), 412-439. · Zbl 1052.42016
[8] A. Culiuc, F. Di Plinio, and Y. Ou, Domination of multilinear singular integrals by positive sparse forms, preprint, available at arXiv:1603.05317. · Zbl 1395.42031
[9] W. Damián, M. Hormozi, and K. Li, New bounds for bilinear Calderón-Zygmund operators and applications, Rev. Mat. Iberoam. (to appear), available at arXiv:1512.02400.
[10] L. Evans and R. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., viii+268 pp., CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[11] L. Grafakos and Z. Si, The Hörmander type multiplier theorem for multilinear operators, J. Reine Angew. Math. 668 (2012), 133-147. · Zbl 1254.42017
[12] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. · Zbl 1250.42036 · doi:10.4007/annals.2012.175.3.9
[13] T. Hytönen and C. Pérez, The \(L(\log L)^{ϵ}\) endpoint estimate for maximal singular integral operators, J. Math. Anal. Appl. 428 (2015), 605-626. · Zbl 1323.42021
[14] T. Hytönen, L. Roncal, and O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math. 218 (2017), 133-164. · Zbl 1368.42015 · doi:10.1007/s11856-017-1462-6
[15] B. Krause and M. Lacey, Sparse bounds for random discrete Carleson theorems, preprint, available at arXiv:1609.08701. · Zbl 1405.42024
[16] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362. · Zbl 0427.42004 · doi:10.1090/S0002-9947-1979-0542885-8
[17] M. Lacey, An elementary proof of the \(A_{2}\) bound, Israel J. Math. 217 (2017), 181-195. · Zbl 1368.42016
[18] M. Lacey and S. Spencer, Sparse bounds for oscillatory and random singular integrals, New York J. Math. 23 (2017), 119-131. · Zbl 1355.42010
[19] A. Lerner, A simple proof of the \(A_{2}\) conjecture, Int. Math. Res. Not. IMRN 14 (2013), 3159-3170. · Zbl 1318.42018 · doi:10.1093/imrn/rns145
[20] A. Lerner, On pointwise estimates involving sparse operators, New York J. Math. 22 (2016), 341-349. · Zbl 1347.42030
[21] A. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics, preprint, 2015, available at arXiv:1508.05639.
[22] K. Li, K. Moen, and W. Sun, The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators, J. Fourier Anal. Appl. 20 (2014), 751-765. · Zbl 1318.42022 · doi:10.1007/s00041-014-9326-5
[23] K. Li and W. Sun, Weak and strong type weighted estimates for multilinear Calderón-Zygmund operators, Adv. Math. 254 (2014), 736-771. · Zbl 1293.42014 · doi:10.1016/j.aim.2013.12.027
[24] K. Li and W. Sun, Weighted estimates for multilinear Fourier multipliers, Forum Math. 27 (2015), 1101-1116. · Zbl 1315.42008
[25] J. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, Trans. Amer. Math. Soc. 357 (2005), 385-396. · Zbl 1072.42014
[26] D. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399. · Zbl 0711.42025 · doi:10.1215/S0012-7094-90-06015-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.