×

Box dimension of bilinear fractal interpolation surfaces. (English) Zbl 1393.28008

The authors derive a formula for the box dimension of a class of fractal interpolation surfaces defined on squares in \(\mathbb{R}^2\) and generated by certain bilinear iterated function systems. This formula is derived using the oscillation of a function over subsets of a square.

MSC:

28A80 Fractals
41A30 Approximation by other special function classes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barnsley, M. F., Fractal functions and interpolation, Constr. Approx., 2, 303-329, (1986) · Zbl 0606.41005 · doi:10.1007/BF01893434
[2] Barnsley, M. F., Elton, J., Hardin, D. and Massopust, P. R., ‘Hidden variable fractal interpolation functions’, SIAM J. Math. Anal.20 (1989), 1218-1242. doi:10.1137/0520080 · Zbl 0704.26009
[3] Barnsley, M. F. and Massopust, P. R., ‘Bilinear fractal interpolation and box dimension’, J. Approx. Theory192 (2015), 362-378. doi:10.1016/j.jat.2014.10.014 · Zbl 1315.28003
[4] Bouboulis, P. and Dalla, L., ‘A general construction of fractal interpolation functions on grids of ℝn’, Eur. J. Appl. Math.18 (2007), 449-476. doi:10.1017/S0956792507007024 · Zbl 1153.41306
[5] Falconer, K. J., Fractal Geometry: Mathematical Foundation and Applications, (1990), Wiley: Wiley, New York, NY · Zbl 0689.28003
[6] Feng, Z., Variation and Minkowski dimension of fractal interpolation surfaces, J. Math. Anal. Appl., 345, 322-334, (2008) · Zbl 1151.28011 · doi:10.1016/j.jmaa.2008.03.075
[7] Geronimo, J. S. and Hardin, D., ‘Fractal interpolation surfaces and a related 2-D multiresolution analysis’, J. Math. Anal. Appl.176 (1993), 561-586. doi:10.1006/jmaa.1993.1232 · Zbl 0778.65009
[8] Hardin, D. P. and Massopust, P. R., ‘The capacity of a class of fractal functions’, Commun. Math. Phys.105 (1986), 455-460. doi:10.1007/BF01205937 · Zbl 0605.28006
[9] Małysz, R., The Minkowski dimension of the bivariate fractal interpolation surfaces, Chaos Solitons Fractals, 27, 1147-1156, (2006) · Zbl 1085.28005 · doi:10.1016/j.chaos.2005.05.007
[10] Massopust, P. R., Fractal surfaces, J. Math. Anal. Appl., 151, 275-290, (1990) · Zbl 0716.28007 · doi:10.1016/0022-247X(90)90257-G
[11] Mazel, D. S. and Hayes, M. H., ‘Using iterated function systems to model discrete sequences’, IEEE Trans. Signal Process.40 (1992), 1724-1734. doi:10.1109/78.143444 · Zbl 0753.58015
[12] Metzler, W. and Yun, C. H., ‘Construction of fractal interpolation surfaces on rectangular grids’, Internat. J. Bifur. Chaos20 (2010), 4079-4086. doi:10.1142/S0218127410027933 · Zbl 1208.28006
[13] Ruan, H.-J. and Xu, Q., ‘Fractal interpolation surfaces on rectangular grids’, Bull. Aust. Math. Soc.91 (2015), 435-446. doi:10.1017/S0004972715000064 · Zbl 1320.28017
[14] Ruan, H.-J., Su, W.-Y. and Yao, K., ‘Box dimension and fractional integral of linear fractal interpolation functions’, J. Approx. Theory161 (2009), 187-197. doi:10.1016/j.jat.2008.08.012 · Zbl 1181.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.