×

Deformations of helical spring and cuboid into hollow cylinders. (English) Zbl 1392.74016

Summary: We study finite inhomogeneous deformations of a helical spring with a rectangular cross-section and a long cuboid. Two surfaces of the spring or the cuboid are joined to obtain a hollow cylinder. When body forces are absent the equilibrium equations reduce to ordinary differential equations. The stress-strain states are the same in each cross-section. The proposed deformations correspond to an inflation, an extension and a torsion of the obtained hollow cylinders. If the obtained cylinders are free of external applied loads, then they have residual stresses.

MSC:

74B20 Nonlinear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Saccomandi G (2001) Universal results in finite elasticity. Non-linear elasticity: theory and applications, vol 283 of London Mathematical Society lecture notes, pp 97-134 · Zbl 0993.74009
[2] Rivlin, RS, Large elastic deformations of isotropic materials. IV. further developments of the general theory, Philos Trans R Soc Lond A Math Phys Eng Sci, 241, 379-397, (1948) · Zbl 0031.42602 · doi:10.1098/rsta.1948.0024
[3] Truesdell, C, The mechanical foundations of elasticity and fluid dynamics, J Ration Mech Anal, 2, 593-616, (1953) · Zbl 0052.40801
[4] Green AE, Zerna W (1968) Theoretical elasticity. Clarendon Press, Oxford · Zbl 0155.51801
[5] Rajagopal, KR; Wineman, AS, New universal relations for nonlinear isotropic elastic materials, J Elast, 17, 75-83, (1987) · Zbl 0602.73017 · doi:10.1007/BF00042450
[6] Beatty, MF, A class of universal relations in isotropic elasticity theory, J Elast, 17, 113-121, (1987) · Zbl 0603.73010 · doi:10.1007/BF00043019
[7] Truesdell C (1972) A first course in rational continuum mechanics. The Johns Hopkins University, Baltimore
[8] Lurie AI (1990) Nonlinear theory of elasticity, English edn. Elsevier, Amsterdam · Zbl 0715.73017
[9] Beatty, MF, A class of universal relations for constrained, isotropic elastic materials, Acta Mech, 80, 299-312, (1989) · Zbl 0703.73001 · doi:10.1007/BF01176166
[10] Rajagopal, KR; Tao, L, On an inhomogeneous deformation of a generalized neo-Hookean material, J Elast, 28, 165-184, (1992) · Zbl 0762.73016 · doi:10.1007/BF00041778
[11] Zubov, LM, Isolated disclination in a nonlinear-elastic compressible solid, Mech Solids, 21, 71-76, (1986)
[12] Karyakin, MI, Equilibrium and stability of a nonlinear-elastic plate with a tapered disclination, J Appl Mech Tech Phys, 33, 464-470, (1992) · doi:10.1007/BF00851746
[13] Karyakin, MI; Pustovalova, OG, Singular solutions of the problems of the nonlinear theory of elastic dislocations, J Appl Mech Tech Phys, 36, 789-795, (1995) · Zbl 1074.74515 · doi:10.1007/BF02369294
[14] Zubov LM (1997) Nonlinear theory of dislocations and disclinations in elastic bodies, vol 47. Springer, Berlin · Zbl 0899.73001
[15] Zubov, LM; Bogachkova, LU, The theory of torsion of elastic noncircular cylinders under large deformations, J Appl Mech, 62, 373-379, (1995) · Zbl 0845.73027 · doi:10.1115/1.2895941
[16] Zelenina, AA; Zubov, LM, The non-linear theory of the pure bending of prismatic elastic solids, J Appl Math Mech, 64, 399-406, (2000) · Zbl 1103.74334 · doi:10.1016/S0021-8928(00)00062-9
[17] Zubov, LM, Large deformations in the three-dimensional bending of prismatic solids, J Appl Math Mech, 68, 455-462, (2004) · Zbl 1122.74419 · doi:10.1016/S0021-8928(04)00060-7
[18] Zubov, LM, The problem of the equilibrium of a helical spring in the non-linear three-dimensional theory of elasticity, J Appl Math Mech, 71, 519-526, (2007) · doi:10.1016/j.jappmathmech.2007.09.006
[19] Tobushi, H; Tanaka, K, Deformation of a shape memory alloy helical spring: analysis based on stress-strain-temperature relation, JSME Int J Ser 1 Solid Mech Strength Mater, 34, 83-89, (1991) · doi:10.1299/jsmea1988.34.1_83
[20] Pendry, JB, A chiral route to negative refraction, Science, 306, 1353-1355, (2004) · doi:10.1126/science.1104467
[21] Carpi, F; Migliore, A; Serra, G; Rossi, D, Helical dielectric elastomer actuators, Smart Mater Struct, 14, 1210, (2005) · doi:10.1088/0964-1726/14/6/014
[22] Wang, B; Zhou, J; Koschny, T; Kafesaki, M; Soukoulis, CM, Chiral metamaterials: simulations and experiments, J Opt A Pure Appl Opt, 11, 114003, (2009) · doi:10.1088/1464-4258/11/11/114003
[23] Girchenko, AA; Eremeyev, VA; Morozov, NF, Modeling of spiral nanofilms with piezoelectric properties, Phys Mesomech, 14, 10-15, (2011) · doi:10.1016/j.physme.2011.04.002
[24] Girchenko, AA; Eremeyev, VA; Altenbach, H, Interaction of a helical shell with a nonlinear viscous fluid, Int J Eng Sci, 61, 53-58, (2012) · Zbl 06923903 · doi:10.1016/j.ijengsci.2012.06.009
[25] Saleeb, AF; Dhakal, B; Hosseini, MS; Padula, SA, Large scale simulation of niti helical spring actuators under repeated thermomechanical cycles, Smart Mater Struct, 22, 094006, (2013) · doi:10.1088/0964-1726/22/9/094006
[26] Babaee, S; Viard, N; Wang, P; Fang, NX; Bertoldi, K, Harnessing deformation to switch on and off the propagation of sound, Adv Mater, 28, 1631-1635, (2016) · doi:10.1002/adma.201504469
[27] Knoop FM, Sommer B (2004) Manufacturing and use of spiral welded pipes for high-pressure service-state of the art. In: Proceedings of IPC, pp 1761-1770 · Zbl 06923903
[28] Zubov, LM, Description of finite deformations of thin shells by means of coordinates ot the reference and actual configurations, Mech Solids, 18, 117-123, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.