×

zbMATH — the first resource for mathematics

A solution-adaptive lattice Boltzmann method for two-dimensional incompressible viscous flows. (English) Zbl 1391.76643
Summary: A stencil adaptive lattice Boltzmann method (LBM) is developed in this paper. It incorporates the stencil adaptive algorithm developed by Ding and Shu [26] for the solution of Navier-Stokes (N-S) equations into the LBM calculation. Based on the uniform mesh, the stencil adaptive algorithm refines the mesh by two types of 5-points symmetric stencils, which are used in an alternating sequence for increased refinement levels. The two types of symmetric stencils can be easily combined to form a 9-points symmetric structure. Using the one-dimensional second-order interpolation recently developed by Wu and Shu [27] along the straight line and the D2Q9 model, the adaptive LBM calculation can be effectively carried out. Note that the interpolation coefficients are only related to the lattice velocity and stencil size. Hence, the simplicity of LBM is not broken down and the accuracy is maintained. Due to the use of adaptive technique, much less mesh points are required in the simulation as compared to the standard LBM. As a consequence, the computational efficiency is greatly enhanced. The numerical simulation of two dimensional lid-driven cavity flows is carried out. Accurate results and improved efficiency are reached. In addition, the steady and unsteady flows over a circular cylinder are simulated to demonstrate the capability of proposed method for handling problems with curved boundaries. The obtained results compare well with data in the literature.

MSC:
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Ann. rev. fluid mech., 30, 329-364, (1998) · Zbl 1398.76180
[2] Qian, Y.H.; d’Humieres, D.; Lallemand, P., Lattice BGK model for navier – stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
[3] Cao, N.; Chen, S.; Jin, S.; Martinez, D., Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. rev. E, 55, R21-R24, (1997)
[4] Mei, R.; Shyy, W., On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. comput. phys., 143, 426-448, (1998) · Zbl 0934.76074
[5] Succi, S.; Amati, G.; Benzi, R., Challenges in lattice Boltzmann computing, J. stat. phys., 81, 5-16, (1995) · Zbl 1106.82376
[6] Chen, H., Volumetric formulation of the lattice Boltzmann method for fluid dynamics: basic concept, Phys. rev. E, 58, 3955-3963, (1998)
[7] Peng, G.; Duncan, H.Xi.C.; Chou, S.H., Lattice Boltzmann method on irregular meshes, Phys. rev. E, 58, R4124-R4127, (1998)
[8] Xi, H.; Peng, G.; Chou, S.H., Finite-volume lattice Boltzmann method, Phys. rev. E, 59, 6202-6205, (1999)
[9] Lee, T.; Lin, C.L., A characteristic Galerkin method for discrete Boltzmann equation, J. comput. phys., 171, 336-356, (2001) · Zbl 1017.76043
[10] Li, Y.; LeBoeuf, E.J.; Basu, P.K., Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh, Phys. rev. E, 72, 046711, (2005)
[11] He, X.; Luo, L.S.; Dembo, M., Some progress in lattice Boltzmann method. part I: nonuniform mesh grids, J. comput. phys., 129, 357-363, (1996) · Zbl 0868.76068
[12] He, X.; Doolen, G.D., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. comput. phys., 134, 306-315, (1997) · Zbl 0886.76072
[13] Imamura, T.; Suzuki, K.; Nakamura, T.; Yoshida, M., Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method, J. comput. phys., 202, 645-663, (2005) · Zbl 1076.82032
[14] Shu, C.; Niu, X.D.; Chew, Y.T., Taylor-series expansion and least-squares-based lattice Boltzmann method: two-dimensional formulation and its applications, Phys. rev. E, 65, 036708, (2002)
[15] Niu, X.D.; Chew, Y.T.; Shu, C., Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method, J. comput. phys., 188, 176-193, (2003) · Zbl 1038.76033
[16] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. comput. phys., 147, 219-228, (1998) · Zbl 0917.76061
[17] Filippova, O.; Hänel, D., Acceleration of lattice-BGK schemes with grid refinement, J. comput. phys., 165, 407-427, (2000) · Zbl 0990.76070
[18] Yu, D.; Mei, R.; Shyy, W., A multi-block lattice Boltzmann method for viscous fluid flows, Int. J. numer. methods fluids, 39, 99-120, (2002) · Zbl 1036.76051
[19] Tolke, J.; Krafczyk, M., Second order interpolation of the flow field in the lattice Boltzmann method, Comput. math. appl., 58, 898-902, (2009) · Zbl 1189.76416
[20] Miller, K.; Miller, R.N., Moving finite elements. I, SIAM J. numer. anal., 18, 1019-1032, (1981) · Zbl 0518.65082
[21] Dorfi, E.A.; Drury, L. O’C., Simple adaptive grids for 1-D initial value problems, J. comput. phys., 69, 175-195, (1987) · Zbl 0607.76041
[22] Berger, M.J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 484-512, (1984) · Zbl 0536.65071
[23] Zhu, J.Z.; Zienkiewicz, O.C., Adaptive techniques in the finite element method, Commun. appl. numer. methods, 4, 197-204, (1988) · Zbl 0633.73070
[24] Crouse, B.; Rank, E.; Krafczyk, M.; Tolke, J., A LB-based approach for adaptive flow simulations, Int. J. mod. phys. B, 17, 109-112, (2002)
[25] Tolke, J.; Freudiger, S.; Krafczyk, M., An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations, Comput. fluids, 35, 820-830, (2006) · Zbl 1177.76332
[26] Ding, H.; Shu, C., A stencil adaptive algorithm for finite difference solution of incompressible viscous flows, J. comput. phys., 214, 397-420, (2006) · Zbl 1088.76042
[27] Wu, J.; Shu, C., An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows, J. comput. phys., 229, 5022-5042, (2010) · Zbl 1346.76164
[28] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. rev. E, 61, 6546-6562, (2000)
[29] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solutions for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387-411, (1982) · Zbl 0511.76031
[30] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. comput. phys., 228, 1963-1979, (2009) · Zbl 1243.76081
[31] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part I: steady flow, J. fluid mech., 79, 231-256, (1977)
[32] Gresho, P.M.; Chan, S.T.; Lee, R.L.; Upson, C.D., A modified finite element method for solving the time-dependent, incompressible navier – stokes equations. part II: applications, Int. J. numer. methods fluids, 4, 619-640, (1984) · Zbl 0559.76031
[33] Shu, C.; Richards, B.E., Application of generalized differential quadrature to solve two-dimensional incompressible navier – stokes equations, Int. J. numer. methods fluids, 15, 791-798, (1992) · Zbl 0762.76085
[34] Tritton, D.J., Experiments on the flow past a circular cylinder at low Reynolds numbers, J. fluid mech., 6, 547-567, (1959) · Zbl 0092.19502
[35] Williamson, C.H.K., Vortex dynamics in the cylinder wake, Annu. rev. fluid mech., 28, 477-539, (1996) · Zbl 0899.76129
[36] Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. comput. phys., 189, 351-370, (2003) · Zbl 1061.76046
[37] Su, S.W.; Lai, M.C.; Lin, C.A., An immersed boundary technique for simulating complex flows with rigid boundary, Comput. fluids, 36, 313-324, (2007) · Zbl 1177.76299
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.