×

Rossby solitary waves excited by the unstable topography in weak shear flow. (English) Zbl 1391.76083

Summary: A new forced KdV equation including topography is derived and the numerical solutions are given. The topographic variable should be related with the temporal and spatial function, which is called unstable topography. The physical features of the solitary waves about the mass and energy are discussed by theoretical analysis. In further studies, the pseudo-spectral numerical methods are used to discuss the evolution of solitary wave generated by the topography when meridional wave number \(m=1\); in a similar way, we analyze the solitary wave when meridional wave number \(m=2\). At last, we make the comparison for the characteristics of waves between \(m=1\) and \(m=2\), the wave of meridional number \(m=1\) plays a leading role.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35C08 Soliton solutions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E.N.: Barotropic instability of Rossby wave motion. J. Atmos. Sci. 29(2), 258-265 (1972)
[2] Flierl, G.R.: Rossby wave radiation from a strongly nonlinear warm eddy. J. Phys. Oceanogr. 14(1), 47-58 (1984)
[3] Ambrizzi, T., Hoskins, B.J., Hsu, H.H.: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 52(21), 3661-3672 (1970)
[4] Kirtman, B.P.: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Clim. 10(7), 1690-1705 (1997)
[5] Long, R.R.: Solitary waves in the westerlies. J. Atmos. Sci. 21(2), 197-200 (1964)
[6] Benney, D.J.: Long nonlinear waves in fluid flows. J. Math. Phys. 45, 52-63 (1966) · Zbl 0151.42501
[7] Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34(5), 1289-1296 (1973) · Zbl 1334.35299
[8] Grimshaw, R.: Nonlinear aspects of long shelf waves. Geophys. Astrophys. Fluid Dyn. 8(1), 3-16 (1977) · Zbl 0353.76073
[9] Redekopp, L.G.: On the theory of solitary Rossby waves. J. Fluid Mech. 82(4), 725-745 (1977) · Zbl 0362.76055
[10] Redekopp, L.G., Weidman, P.D.: Solitary Rossby waves in zonal shear flows and their interactions. J. Atmos. Sci. 35(5), 790-804 (1978)
[11] Miles, J.W.: On solitary Rossby waves. J. Atmos. Sci. 36(36), 1236-1238 (1979)
[12] Boyd, J.P.: Equatorial solitary waves. Part I: Rossby solitons. J. Phys. Oceanogr. 10(11), 1699-1717 (1980)
[13] Yang, H., Yin, B., Shi, Y., et al.: Forced ILW-Burgers equation as a model for Rossby solitary waves generated by topography in finite depth fluids. J. Appl. Math. 2012, 1-12 (2012). doi:10.1155/2012/491343 · Zbl 1267.35080
[14] Shi, Y.L., Yin, B.S., Yang, H.W., et al.: Dissipative nonlinear Schrödinger equation for envelope solitary Rossby waves with dissipation effect in stratified fluids and its solution. Abstr. Appl. Anal. 2014, 1-9 (2014). doi:10.1155/2014/643652 · Zbl 1474.35589
[15] Yamagata, T.: On nonlinear planetary waves: a class of solutions missed by the traditional quasi-geostrophic approximation. J. Oceanogr. Soc. Jpn. 38(4), 236-244 (1982)
[16] Derzho, O.G., Grimshaw, R.: Rossby waves on a shear flow with recirculation cores. Stud. Appl. Math. 115(4), 387-403 (2005) · Zbl 1145.76339
[17] Lenouo, A., Kamga, F.N., Yepdjuo, E.: Weak interaction in the African easterly jet. Ann. Geophys. 23(5), 1637-1643 (2005)
[18] Li, Q., Farmer, D.M.: The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr. 41(7), 1345-1363 (2011)
[19] Egger, J.: Dynamics of blocking highs. J. Atmos. Sci. 35(10), 1788-1801 (1978)
[20] Charney, J.G., Devore, J.G.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36(7), 1205-1216 (1979)
[21] Patoine, A., Warn, T.: The interaction of long quasi-stationary baroclinic waves with topography. J. Atmos. Sci. 39(5), 1018-1025 (1982)
[22] Warn, T., Brasnett, B.: The amplification and capture of atmospheric solitons by topography: a theory of the onset of regional blocking. J. Atmos. Sci. 40(1983), 28-40 (1983)
[23] Luo, D.H.: Topographically forced Rossby wave instability and the development of blocking in the atmosphere. Adv. Atmos. Sci. 7(4), 433-440 (1990)
[24] Luo, D.H.: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: effect of topography. J. Atmos. Sci. 62, 5-21 (2005)
[25] Grimshaw, R.: Resonant forcing of barotropic coastally trapped waves. J. Phys. Oceanogr. 17, 53-65 (1987)
[26] Yang, L.G., Da, C.J., Song, J., et al.: Rossby waves with linear topography in barotropic fluids. Chin. J. Oceanol. Limnol. 26(3), 334-338 (2008)
[27] Davies, A.G., Villaret, C.: Prediction of sand transport rates by waves and currents in the coastal zone. Contin. Shelf Res. 22(18-19), 2725-2737 (2002)
[28] Hall, P.: Alternating bar instabilities in unsteady channel flows over erodible beds. J. Fluid Mech. 499(499), 49-73 (2004) · Zbl 1042.76029
[29] Yang, H., Yang, D., Shi, Y., et al.: Interaction of algebraic Rossby solitary waves with topography and atmospheric blocking. Dyn. Atmos. Oceans 71, 21-34 (2015)
[30] Yang, H.W., Zhao, Q.F., Yin, B.S., et al.: A new integro-differential equation for Rossby solitary waves with topography effect in deep rotational fluids. Abstr. Appl. Anal. 2013, 271-290 (2013)
[31] Yang, H.W., Xu, Z.H., Yang, D.Z., et al.: ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect. Adv. Differ. Equ. 167, 2-22 (2016). doi:10.1186/s13662-016-0901-8 · Zbl 1419.35180
[32] Berdichevsky, V.: Variational Principles of Continuum Mechanics. Springer, Berlin (2009) · Zbl 1189.49002
[33] Le, K.C., Nguyen, L.T.K.: Amplitude modulation of waves governed by Korteweg-de Vries equation. Int. J. Eng. Sci. 83(83), 117-123 (2014) · Zbl 1423.35343
[34] Le, K.C., Nguyen, L.T.K.: Energy Methods in Dynamics. Springer, Berlin (2014) · Zbl 1303.70001
[35] Le, K.C., Nguyen, L.T.K.: Amplitude modulation of water waves governed by Boussinesq’s equation. Nonlinear Dyn. 81, 659-666 (2015) · Zbl 1347.76009
[36] Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation. Appl. Math. Comput. 251, 275-283 (2015) · Zbl 1328.37054
[37] Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6, 237-254 (2016) · Zbl 1356.37077
[38] Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1), 345-348 (2009) · Zbl 1183.35241
[39] Guo, X.R.: On bilinear representations and infinite conservation laws of a nonlinear variable-coefficient equation. Appl. Math. Comput. 248(C), 531-535 (2014) · Zbl 1338.37085
[40] Zhang, Y., Dong, H.H., Zhang, X., et al.: Rational solutions and lump solutions to the generalized \[(3++1)\]-dimensional shallow water-like equation. Comput. Math. Appl. 73(2), 246-252 (2017) · Zbl 1368.35240
[41] Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979) · Zbl 0429.76001
[42] Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974) · Zbl 0373.76001
[43] Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A. 166(3-4), 205-208 (1992)
[44] Kurasov, P., Packalen, K.: Inverse scattering transformation for positons. J. Phys. A Math. Gen. 32(7), 1269-1278 (1999) · Zbl 0930.35157
[45] Liu, S.K., Fu, Z.T., Liu, S.D., et al.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A. 289(1-2), 69-74 (2001) · Zbl 0972.35062
[46] Elías-Zúñiga, A.: Application of Jacobian elliptic functions to the analysis of the steady-state solution of the damped Duffing equation with driving force of elliptic type. Nonlinear Dyn. 42(2), 175-184 (2005) · Zbl 1094.70014
[47] Zhang, S.: Exact solutions of a KdV equation with variable coefficients via Exp-function method. Nonlinear Dyn. 52(1-2), 11-17 (2007). doi:10.1007/s11071-007-9251-0 · Zbl 1173.35670
[48] Ablowitz, M., Clarkson, P.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1993) · Zbl 0762.35001
[49] Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996) · Zbl 0844.65084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.