×

zbMATH — the first resource for mathematics

Eventually stable rational functions. (English) Zbl 1391.37072

MSC:
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
37P15 Dynamical systems over global ground fields
11R32 Galois theory
12E05 Polynomials in general fields (irreducibility, etc.)
37P25 Dynamical systems over finite ground fields
11S82 Non-Archimedean dynamical systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ahmadi, O.; Luca, F.; Ostafe, A.; Shparlinski, I. E., On stable quadratic polynomials, Glasg. Math. J., 54, 2, 359-369, (2012) · Zbl 1241.11027
[2] Beardon, A. F., Iteration of Rational Functions: Complex Analytic Dynamical Systems, 132, (1991), Springer, New York · Zbl 0742.30002
[3] Bertrand, D., New Advances in Transcendence Theory, Galois representations and transcendental numbers, 37-55, (1988), Cambridge University Press, Cambridge
[4] Boston, N.; Jones, R., Settled polynomials over finite fields, Proc. Amer. Math. Soc., 140, 6, 1849-1863, (2012) · Zbl 1243.11115
[5] A. Bridy and T. J. Tucker, Iterated Galois groups of general cubic polynomials, in preparation. · Zbl 07051737
[6] Carlitz, L., Permutations in finite fields, Acta Sci. Math. (Szeged), 24, 196-203, (1963) · Zbl 0146.06702
[7] Danielson, L.; Fein, B., On the irreducibility of the iterates of \(x^n - b\), Proc. Amer. Math. Soc., 130, 6, 1589-1596, (2002) · Zbl 1007.12001
[8] Faber, X.; Hutz, B.; Ingram, P.; Jones, R.; Manes, M.; Tucker, T. J.; Zieve, M. E., Uniform bounds on pre-images under quadratic dynamical systems, Math. Res. Lett., 16, 1, 87-101, (2009) · Zbl 1222.11086
[9] Gómez-Pérez, D.; Nicolás, A. P.; Ostafe, A.; Sadornil, D., Stable polynomials over finite fields, Rev. Mat. Iberoam., 30, 2, 523-535, (2014) · Zbl 1319.11089
[10] Gómez-Pérez, D.; Ostafe, A.; Shparlinski, I. E., On irreducible divisors of iterated polynomials, Rev. Mat. Iberoamericana, 30, 4, 1123-1134, (2014) · Zbl 1339.11099
[11] Gratton, C.; Nguyen, K.; Tucker, T. J., \(A B C\) implies primitive prime divisors in arithmetic dynamics, Bull. Lond. Math. Soc., 45, 6, 1194-1208, (2013) · Zbl 1291.37121
[12] Guralnick, R. M.; Tucker, T. J.; Zieve, M. E., Exceptional covers and bijections on rational points, Int. Math. Res. Not., 2007, 1, 20, (2007) · Zbl 1127.14023
[13] Hamblen, S.; Jones, R.; Madhu, K., The density of primes in orbits of \(z^d + c\), Int. Math. Res. Not., 2015, 7, 1924-1958, (2015) · Zbl 1395.11128
[14] Ingram, P., Arboreal Galois representations and uniformization of polynomial dynamics, Bull. Lond. Math. Soc., 45, 2, 301-308, (2013) · Zbl 1280.37058
[15] Jacobs, K., Measure and Integral, (1978), Academic Press, New York
[16] Jones, R., The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc. (2), 78, 2, 523-544, (2008) · Zbl 1193.37144
[17] Jones, R., An iterative construction of irreducible polynomials reducible modulo every prime, J. Algebra, 369, 114-128, (2012) · Zbl 1302.11086
[18] Jones, R., Galois representations from pre-image trees: an arboreal survey, Actes de la Conférence “Théorie des Nombres et Applications”, 107-136, (2013), Presses Universitaires Franche-Comté, Besançon · Zbl 1307.11069
[19] Jones, R.; Manes, M., Galois theory of quadratic rational functions, Comment. Math. Helv., 89, 1, 173-213, (2014) · Zbl 1316.11104
[20] Jones, R.; Rouse, J., Galois theory of iterated endomorphisms, Proc. Lond. Math. Soc. (3), 100, 3, 763-794, (2010) · Zbl 1244.11057
[21] Lang, S., Fundamentals of Diophantine Geometry, (1983), Springer, New York · Zbl 0528.14013
[22] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, (2004), Springer, Berlin · Zbl 1159.11039
[23] Odoni, R. W. K., The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3), 51, 3, 385-414, (1985) · Zbl 0622.12011
[24] Pellet, A.-E., Sur la décomposition d’une fonction entière en facteurs irréductibles suivant un module premier \(p\), C. R. Acad. Sci. Paris, 86, 1071-1072, (1878) · JFM 10.0295.03
[25] Pink, R., On the order of the reduction of a point on an abelian variety, Math. Ann., 330, 2, 275-291, (2004) · Zbl 1077.11046
[26] Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15, 4, 259-331, (1972) · Zbl 0235.14012
[27] Silverman, J. H., Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J., 71, 3, 793-829, (1993) · Zbl 0811.11052
[28] Silverman, J. H., The Arithmetic of Dynamical Systems, 241, (2007), Springer, New York · Zbl 1130.37001
[29] Sookdeo, V. A., Integer points in backward orbits, J. Number Theory, 131, 7, 1229-1239, (2011) · Zbl 1246.37102
[30] Stickelberger, L., Verh. 1 Internat. Math. Kongresses, Zürich, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, 182-193, (1898), Leipzig
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.