×

Triangulated equivalence between a homotopy category and a triangulated quotient category. (English) Zbl 1391.18017

M. Hovey [Math. Z. 241, No. 3, 553–592 (2002; Zbl 1016.55010)] introduced the notion of abelian model categories as bicomplete abelian categories possessing a compatible model structure. His most wonderful result, which is now known as Hovey’s correspondence, says that there is a one-to-one correspondence between abelian model structures and complete cotorsion pairs.
Given two complete hereditary cotorsion pairs \((\mathcal{Q}, \mathcal{R})\) and \((\mathcal{Q}', \mathcal{R}')\) in a bicomplete abelian category \(\mathcal{G}\) such that \(\mathcal{Q}'\subseteq\mathcal{Q}\) and \(\mathcal{Q}\cap\mathcal{R} = \mathcal{Q}'\cap\mathcal{R}'\), H. Becker [Adv. Math. 254, 187–232 (2014; Zbl 1348.16009)] showed that there exists a hereditary abelian model structure \(\mathcal{M}=(\mathcal{Q},\mathcal{W},\mathcal{R}')\) on \(\mathcal{G}\), where \(\mathcal{W}\) is a thick subcategory of \(\mathcal{G}\).
The authors prove that the homotopy category \(\text{Ho}(\mathcal{M})\) of \(\mathcal{M}\) is triangulated equivalent to the triangulated quotient category \(D^b(\mathcal{G})_{\widehat{[\mathcal{Q},\mathcal{R}']}}/K^b(\mathcal{Q}\cap\mathcal{R}')\), where \(D^b(\mathcal{G})_{\widehat{[\mathcal{Q},\mathcal{R}]}}\) is the subcategory of \(D^b(\mathcal{G})\) consisting of all homology bounded complexes with both finite \(\mathcal{Q}\) dimension and \(\mathcal{R}'\) dimension and \(K^b(\mathcal{Q}'\cap\mathcal{R})\) is the bounded homotopy category of \(\mathcal{Q}\cap\mathcal{R}\) (core) objects.
The authors focus their attention on the category of modules for giving some applications of main results. It is shown that the homotopy category of the Gorenstein flat (resp., Ding projective and Gorenstein \(AC\)-projective) model structure on the category of modules established by J. Gillespie [Homology Homotopy Appl. 12, No. 1, 61–73 (2010; Zbl 1231.16005)] can be realized as a certain triangulated quotient category.

MSC:

18E30 Derived categories, triangulated categories (MSC2010)
16D40 Free, projective, and flat modules and ideals in associative algebras
18E10 Abelian categories, Grothendieck categories
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auslander, M.; Bridger, M., Stable module theory, Memoirs Amer. Math. Soc., vol. 94, (1969), Amer. Math. Soc. Providence · Zbl 0204.36402
[2] Avramov, L. L.; Foxby, H.-B., Homological dimensions of unbounded complexes, J. Pure Appl. Algebra, 71, 129-155, (1991) · Zbl 0737.16002
[3] Beligiannis, A., The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra, 28, 4547-4596, (2000) · Zbl 0964.18006
[4] Beligiannis, A., Homotopy theory of modules and Gorenstein rings, Math. Scand., 89, 5-45, (2001) · Zbl 1023.55009
[5] Beligiannis, A., Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, 288, 137-211, (2005) · Zbl 1119.16007
[6] Becker, H., Models for singularity categories, Adv. Math., 254, 187-232, (2014) · Zbl 1348.16009
[7] Bennis, D., Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra, 37, 855-868, (2009) · Zbl 1205.16006
[8] Buchweitz, R.-O., Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, (1986), University Hannover, preprint
[9] Bravo, D.; Gillespie, J., Absolutely Clean, level, and Gorenstein AC-injective complexes, Comm. Algebra, 44, 2213-2233, (2016) · Zbl 1346.18021
[10] Bravo, D.; Gillespie, J.; Hovey, M., The stable module category of a general ring
[11] Chen, X. W., Relative singularity categories and Gorenstein-projective modules, Math. Nachr., 284, 199-212, (2011) · Zbl 1244.18014
[12] Christensen, L. W., Gorenstein dimensions, Lecture Notes in Math., (2000), Springer-Verlag Berlin · Zbl 0965.13010
[13] Ding, N. Q.; Chen, J. L., The flat dimensions of injective modules, Manuscripta Math., 78, 165-177, (1993) · Zbl 0804.16005
[14] Ding, N. Q.; Chen, J. L., Coherent rings with finite self-FP-injective dimension, Comm. Algebra, 24, 2963-2980, (1996) · Zbl 0855.16001
[15] Ding, N. Q.; Li, Y. L.; Mao, L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 86, 323-338, (2009) · Zbl 1200.16010
[16] Enochs, E. E.; Jenda, O. M.G., Relative homological algebra, de Gruyter Exp. Math., vol. 30, (2000), de Gruyter Berlin · Zbl 0952.13001
[17] Enochs, E. E.; Jenda, O. M.G.; Torrecillas, B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10, 1-9, (1993) · Zbl 0794.16001
[18] Enochs, E. E.; Xu, J. Z., Gorenstein flat covers of modules over Gorenstein rings, J. Algebra, 181, 288-313, (1996) · Zbl 0847.16003
[19] Enochs, E. E.; Jenda, O. M.G.; Lopez-Ramos, J. A., The existence of Gorenstein flat covers, Math. Scand., 94, 46-62, (2004) · Zbl 1061.16003
[20] Estrada, S.; Iacob, A.; Pérez, M. A., Model structures and relative Gorenstein flat modules
[21] Emmanouil, I., On the finiteness of Gorenstein homological dimensions, J. Algebra, 372, 376-396, (2012) · Zbl 1286.13014
[22] Gelfand, S. I.; Manin, Y. I., Methods of homological algebra, Springer Monographs in Mathematics, (2003), Springer-Verlag Berlin · Zbl 1006.18001
[23] Gillespie, J., Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl., 12, 61-73, (2010) · Zbl 1231.16005
[24] Gillespie, J., Hereditary abelian model categories, Bull. Lond. Math. Soc., 48, 895-922, (2016) · Zbl 1372.18001
[25] Gillespie, J., How to construct a hovey triple from two cotorsion pairs, Fund. Math., 230, 281-289, (2015) · Zbl 1316.18012
[26] Gillespie, J., The flat model structure on ch(R), Trans. Amer. Math. Soc., 356, 3369-3390, (2004) · Zbl 1056.55011
[27] Gillespie, J., The flat stable module category of a coherent ring, J. Pure Appl. Algebra, 221, 2025-2031, (2017) · Zbl 1392.16012
[28] Gillespie, J., On Ding injective, Ding injective and Ding flat modules and complexes, Rocky Mountain J. Math., 8, 2641-2673, (2017) · Zbl 1443.16006
[29] Happel, D., On Gorenstein algebras, Progress in Mathematics, vol. 95, 389-404, (1991), Birkhäuser Verlag Basel · Zbl 0759.16007
[30] Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, (1988), Cambridge University Press Cambridge · Zbl 0635.16017
[31] Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 189, 167-193, (2004) · Zbl 1050.16003
[32] Hovey, M., Cotorsion pairs, model category structures, and representation theory, Math. Z., 241, 553-592, (2002) · Zbl 1016.55010
[33] Hu, J. S.; Ding, N. Q., A model structure approach to the Tate-vogel cohomology, J. Pure Appl. Algebra, 220, 2240-2264, (2016) · Zbl 1373.16026
[34] Iacob, A., Gorenstein flat dimension for complexes, J. Math. Kyoto Univ., 49, 817-842, (2009) · Zbl 1234.16003
[35] Mahdou, N.; Tamekkante, M., Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math. Ser. B, 32, 533-548, (2011) · Zbl 1300.16012
[36] Mao, L. X.; Ding, N. Q., The cotorsion dimension of modules and rings, (Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., vol. 249, (2005)), 217-233 · Zbl 1110.16005
[37] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 227-248, (2004) · Zbl 1101.81093
[38] Pierce, R. S., The global dimension of Boolean rings, J. Algebra, 7, 91-99, (1967) · Zbl 0149.28103
[39] Ren, W.; Liu, Z. K., Cotorsion dimension of unbounded complexes, Comm. Algebra, 41, 4378-4392, (2013) · Zbl 1301.16011
[40] Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317, (1989) · Zbl 0685.16016
[41] Veliche, O., Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc., 358, 1257-1283, (2006) · Zbl 1094.16007
[42] Wang, J. P., Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., 54, 1935-1950, (2017) · Zbl 1426.16010
[43] Yang, G.; Liang, L., All modules have Gorenstein flat precovers, Comm. Algebra, 42, 3078-3085, (2014) · Zbl 1325.16005
[44] Yang, X. Y.; Ding, N. Q., On a question of Gillespie, Forum Math., 27, 3205-3231, (2015) · Zbl 1347.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.