×

zbMATH — the first resource for mathematics

Enhanced finite spectrum assignment with disturbance compensation for LTI systems with input delay. (English) Zbl 1390.93339
Summary: This paper presents a Finite Spectrum Assignment (FSA) with a generalized feedforward control for Linear Time-Invariant (LTI) systems with input delay and bounded unmeasured disturbances. A novel two-layer feedforward strategy is proposed in order to deal with matched and unmatched disturbances. The proposed control law is based on a filtered disturbance estimator and a generalized feedforward compensation which can be applied to any Artstein based predictor. An optimization design procedure is presented to improve disturbance attenuation properties in the presence of band-limited disturbances. The conditions to achieve disturbance rejection are also shown to deal with deterministic disturbance models. Furthermore, the proposed solution can be used to define either continuous-time or discrete-time control algorithms. Two case studies are presented to illustrate the benefits of the new approach.

MSC:
93B55 Pole and zero placement problems
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artstein, Z., Linear systems with delayed controls: a reduction, IEEE Trans. Autom. Control, 27, 4, 869-879, (1982) · Zbl 0486.93011
[2] Åström, K. J.; Wittenmark, B., Computer-controlled systems: theory and design, (1997), Prentice Hall, Inc., Upper Saddle River New Jersey
[3] Basturk, H.; Krstic, M., Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay, Automatica, 58, 131-138, (2015) · Zbl 1330.93131
[4] Davis, R.; Burns, A.; Bril, R.; Lukkien, J., Controller area network (CAN) schedulability analysis: refuted, revisited and revised, Real-Time Syst., 35, 3, 239-272, (2007)
[5] Di Loreto, M.; Loiseau, J. J.; Lafay, J.-F., Disturbance attenuation by dynamic output feedback for input-delay systems, Automatica, 44, 8, 2202-2206, (2008) · Zbl 1283.93095
[6] Furtat, I.; Fridman, E.; Fradkov, A., Disturbance compensation with finite spectrum assignment for plants with input delay, IEEE Trans. Automat. Control, (2017)
[7] Hao, S.; Liu, T.; Zhou, B., Predictor-based output feedback control design for sampled systems with input delay subject to disturbance, IET Control Theory Appl., 11, 18, 3329-3340, (2017)
[8] Huang, C.; Sira-Ramírez, H., Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients, Int. J. Control, 88, 12, 2578-2587, (2015) · Zbl 1335.93039
[9] de Jesús Rubio, J., Hybrid controller with observer for the estimation and rejection of disturbances, ISA Trans., 65, 445-455, (2016)
[10] de Jesús Rubio, J., Structure control for the disturbance rejection in two electromechanical processes, J. Frankl. Inst., 353, 14, 3610-3631, (2016) · Zbl 1347.93115
[11] de Jesus Rubio, J.; Ochoa, G.; Balcazar, R.; Pacheco, J., Disturbance rejection in two mechatronic systems, IEEE Latin Am. Trans., 14, 2, 485-492, (2016)
[12] de Jesus Rubio, J.; Soriano, E.; Juarez, C.; Pacheco, J., Sliding mode regulator for the perturbations attenuation in two tank plants, IEEE Access, 5, 20504-20511, (2017)
[13] Kwon, W.; Pearson, A., Feedback stabilization of linear systems with delayed control, IEEE Trans. Automat. Control, 25, 2, 266-269, (1980) · Zbl 0438.93055
[14] Léchappé, V.; Moulay, E.; Plestan, F.; Glumineau, A.; Chriette, A., New predictive scheme for the control of LTI systems with input delay and unknown disturbances, Automatica, 52, 179-184, (2015) · Zbl 1309.93059
[15] Liu, R.-J.; Liu, G.-P.; Wu, M.; Nie, Z.-Y., Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach, J. Frankl. Inst., 351, 6, 3364-3377, (2014) · Zbl 1290.93054
[16] Liu, T.; Gil, G.; Chen, Y.; Ren, X.; p. albertos; Sanz, R., New predictor and 2dof control scheme for industrial processes with long time delay, IEEE Trans. Ind. Electron., PP, 99, 1, (2017)
[17] Loreto, M. D.; Loiseau, J. J.; Lafay, J.-F., Adaptive control scheme for uncertain time-delay systems, Automatica, 48, 8, 1536-1552, (2012) · Zbl 1268.93080
[18] Manitius, A. Z.; Olbrot, A., Finite spectrum assignment problem for systems with delays, IEEE Trans. Automat. Control, 24, 4, 541-552, (1979) · Zbl 0425.93029
[19] Normey-Rico, J.; Camacho, E., Control of Dead-Time Processes, (2007), Springer
[20] Polyakov, A., Minimization of disturbances effects in time delay predictor-based sliding mode control systems, J. Frankl. Inst., 349, 4, 1380-1396, (2012) · Zbl 1254.93054
[21] Pyrkin, A.; Bobtsov, A., Adaptive controller for linear system with input delay and output disturbance, IEEE Trans. Automat. Control, 61, 12, 4229-4234, (2016) · Zbl 1359.93232
[22] Santos, T., Modified artstein predictor for LTI systems with dead time and unknown disturbances, J. Control Automat. Electr. Syst., 27, 3, 263-273, (2016)
[23] Santos, T.; Limon, D.; Normey-Rico, J.; Raffo, G., Dead-time compensation of constrained linear systems with bounded disturbances: output feedback case, IET Control Theory Appl., 7, 1, 52-59, (2013)
[24] Santos, T.; Limon, D.; Normey-Rico, J. E.; Alamo, T., On the explicit dead-time compensation for robust model predictive control, J. Process Control, 22, 1, 236-246, (2012)
[25] Santos, T.; Silva, B.; Uzêda, L., Multivariable filtered Smith predictor for systems with sinusoidal disturbances, Int. J. Syst. Sci., 48, 10, 2182-2194, (2017) · Zbl 1371.93067
[26] Santos, T.; Torrico, B.; Normey-Rico, J., Simplified filtered Smith predictor for MIMO processes with multiple time delays, ISA Trans., 65, 339-349, (2016)
[27] Sanz, R.; Garcia, P.; Albertos, P., Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay, Automatica, 72, 205-208, (2016) · Zbl 1344.93040
[28] Smith, O., Closer control of loops with dead time, Chem. Eng. Progr., 53, 5, 217-219, (1957)
[29] Torrico, B.; Cavalcante, M.; Braga, A.; Normey-Rico, J.; Albuquerque, A., Simple tuning rules for dead-time compensation of stable, integrative, and unstable first-order dead-time processes, Ind. Eng. Chem. Res., 52, 33, 11646-11654, (2013)
[30] Wang, J.; Li, S.; Yang, J.; Wu, B.; Li, Q., Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory Appl., 9, 4, 579-586, (2015)
[31] Wang, Y.-X.; Yu, D.-H.; Kim, Y.-B., Robust time-delay control for the dc-dc boost converter, IEEE Trans. Ind. Electron., 61, 9, 4829-4837, (2014)
[32] Xie, L.; Shieh, L.-S.; Tsai, J. S.-H.; Guo, S.-M.; Dunn, A. C., Digital redesign of analog Smith predictor for systems with long input time delays, J. Frankl. Inst., 354, 14, 5797-5812, (2017) · Zbl 1373.93211
[33] Zeng, H.; Di Natale, M.; Giusto, P.; Sangiovanni-Vincentelli, A., Stochastic analysis of CAN-based real-time automotive systems, IEEE Trans. Ind. Inf., 5, 4, 388-401, (2009)
[34] Zhang, H.; Wang, J., Combined feedback-feedforward tracking control for networked control systems with probabilistic delays, J. Frankl. Inst., 351, 6, 3477-3489, (2014) · Zbl 1290.93046
[35] Zhong, Q.-C.; Rees, D., Control of uncertain LTI systems based on an uncertainty and disturbance estimator, J. Dyn. Syst. Measur. Control(Trans. ASME), 126, 4, 905-910, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.