×

zbMATH — the first resource for mathematics

Non-Gaussianity as a particle detector. (English) Zbl 1390.83465
Summary: We study the imprints of massive particles with spin on cosmological correlators. Using the framework of the effective field theory of inflation, we classify the couplings of these particles to the Goldstone boson of broken time translations and the graviton. We show that it is possible to generate observable non-Gaussianity within the regime of validity of the effective theory, as long as the masses of the particles are close to the Hubble scale and their interactions break the approximate conformal symmetry of the inflationary background. We derive explicit shape functions for the scalar and tensor bispectra that can serve as templates for future observational searches.

MSC:
83F05 Cosmology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
[2] D. Baumann and L. McAllister, Inflation and String Theory, Cambridge University Press, Cambridge U.K. (2015) [arXiv:1404.2601]. · Zbl 1339.83003
[3] Parker, L., Particle creation in expanding universes, Phys. Rev. Lett., 21, 562, (1968)
[4] L. Parker, Quantized Fields and Particle Creation in Expanding Universes. I, Phys. Rev.183 (1969) 1057.
[5] L. Parker, Quantized Fields and Particle Creation in Expanding Universes. II, Phys. Rev.D 3 (1971) 346.
[6] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[7] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, arXiv:1606.00513 [INSPIRE].
[8] Senatore, L.; Zaldarriaga, M., The effective field theory of multifield inflation, JHEP, 04, 024, (2012)
[9] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010)
[10] Baumann, D.; Green, D., Signatures of supersymmetry from the early universe, Phys. Rev., D 85, 103520, (2012)
[11] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110
[12] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[13] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP10 (2004) 006 [astro-ph/0407059] [INSPIRE].
[14] Mirbabayi, M.; Simonović, M., Effective theory of squeezed correlation functions, JCAP, 03, 056, (2016)
[15] Chen, X.; Namjoo, MH; Wang, Y., Quantum primordial standard clocks, JCAP, 02, 013, (2016)
[16] Rindani, SD; Sivakumar, M., Gauge-invariant description of massive higher-spin particles by dimensional reduction, Phys. Rev., D 32, 3238, (1985)
[17] Aragone, C.; Deser, S.; Yang, Z., Massive higher spin from dimensional reduction of gauge fields, Annals Phys., 179, 76, (1987)
[18] Cheung, C.; Creminelli, P.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., The effective field theory of inflation, JHEP, 03, 014, (2008)
[19] T. Garidi, What is mass in de Sitterian physics?, hep-th/0309104 [INSPIRE].
[20] Higuchi, A., Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys., B 282, 397, (1987)
[21] Deser, S.; Nepomechie, RI, Gauge invariance versus masslessness in de Sitter space, Annals Phys., 154, 396, (1984)
[22] L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev.D 9 (1974) 898 [INSPIRE].
[23] L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev.D 9 (1974) 910 [INSPIRE].
[24] Yu. M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
[25] Deser, S.; Waldron, A., Arbitrary spin representations in de Sitter from ds/CFT with applications to ds supergravity, Nucl. Phys., B 662, 379, (2003) · Zbl 1040.81068
[26] Wigner, E., On unitary representations of the inhomogeneous Lorentz group, Ann. Math., 40, 149, (1939) · JFM 65.1129.01
[27] Thomas, L., On unitary representations of the group of de Sitter space, Ann. Math., 42, 113, (1941) · Zbl 0024.30001
[28] Newton, T., A note on the representations of the de Sitter group, Ann. Math., 51, 730, (1950) · Zbl 0038.01702
[29] Deser, S.; Waldron, A., Gauge invariances and phases of massive higher spins in (A)ds, Phys. Rev. Lett., 87, 031601, (2001)
[30] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
[31] Baumann, D.; Green, D., Equilateral non-gaussianity and new physics on the horizon, JCAP, 09, 014, (2011)
[32] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[33] Creminelli, P.; Gleyzes, J.; Noreña, J.; Vernizzi, F., Resilience of the standard predictions for primordial tensor modes, Phys. Rev. Lett., 113, 231301, (2014)
[34] BICEP2, Keck Array collaboration, P.A.R. Ade et al., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett.116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
[35] L.V. Delacretaz, T. Noumi and L. Senatore, Boost Breaking in the EFT of Inflation, arXiv:1512.04100 [INSPIRE].
[36] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014, (2006)
[37] Baumann, D.; Green, D.; Lee, H.; Porto, RA, Signs of analyticity in single-field inflation, Phys. Rev., D 93, 023523, (2016)
[38] Chen, X.; Wang, Y., Quasi-single field inflation with large mass, JCAP, 09, 021, (2012)
[39] Pi, S.; Sasaki, M., Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP, 10, 051, (2012)
[40] Cheung, C.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., On the consistency relation of the 3-point function in single field inflation, JCAP, 02, 021, (2008)
[41] Creminelli, P.; Noreña, J.; Simonović, M., Conformal consistency relations for single-field inflation, JCAP, 07, 052, (2012)
[42] Assassi, V.; Baumann, D.; Green, D., On soft limits of inflationary correlation functions, JCAP, 11, 047, (2012)
[43] Hinterbichler, K.; Hui, L.; Khoury, J., An infinite set of Ward identities for adiabatic modes in cosmology, JCAP, 01, 039, (2014)
[44] Pimentel, GL, Inflationary consistency conditions from a wavefunctional perspective, JHEP, 02, 124, (2014) · Zbl 1333.83049
[45] Berezhiani, L.; Khoury, J., Slavnov-Taylor identities for primordial perturbations, JCAP, 02, 003, (2014)
[46] Binosi, D.; Quadri, A., The cosmological slavnov-Taylor identity from BRST symmetry in single-field inflation, JCAP, 03, 045, (2016)
[47] Tanaka, T.; Urakawa, Y., Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP, 05, 014, (2011)
[48] Pajer, E.; Schmidt, F.; Zaldarriaga, M., The observed squeezed limit of cosmological three-point functions, Phys. Rev., D 88, 083502, (2013)
[49] Creminelli, P.; D’Amico, G.; Musso, M.; Norena, J., The (not so) squeezed limit of the primordial 3-point function, JCAP, 11, 038, (2011)
[50] Lim, EA, Quantum information of cosmological correlations, Phys. Rev., D 91, 083522, (2015)
[51] Martin, J.; Vennin, V., Quantum discord of cosmic inflation: can we show that CMB anisotropies are of quantum-mechanical origin?, Phys. Rev., D 93, 023505, (2016)
[52] Maldacena, J., A model with cosmological Bell inequalities, Fortsch. Phys., 64, 10, (2016) · Zbl 1339.83087
[53] S. Choudhury, S. Panda and R. Singh, Bell violation in the Sky, arXiv:1607.00237 [INSPIRE].
[54] Liu, J.; Sou, C-M; Wang, Y., Cosmic decoherence: massive fields, JHEP, 10, 072, (2016)
[55] Kundu, N.; Shukla, A.; Trivedi, SP, Constraints from conformal symmetry on the three point scalar correlator in inflation, JHEP, 04, 061, (2015) · Zbl 1388.81729
[56] Giombi, S.; Prakash, S.; Yin, X., A note on CFT correlators in three dimensions, JHEP, 07, 105, (2013) · Zbl 1342.81492
[57] Dimastrogiovanni, E.; Fasiello, M.; Kamionkowski, M., Imprints of massive primordial fields on large-scale structure, JCAP, 02, 017, (2016)
[58] P.D. Meerburg, J. Meyers, A. van Engelen and Y. Ali-Haïmoud, CMB B-mode non-Gaussianity, Phys. Rev.D 93 (2016) 123511 [arXiv:1603.02243] [INSPIRE].
[59] Abazajian, KN; etal., Neutrino physics from the cosmic microwave background and large scale structure, Astropart. Phys., 63, 66, (2015)
[60] Blas, D.; Comelli, D.; Nesti, F.; Pilo, L., Lorentz breaking massive gravity in curved space, Phys. Rev., D 80, 044025, (2009)
[61] Bordin, L.; Creminelli, P.; Mirbabayi, M.; Noreña, J., Tensor squeezed limits and the higuchi bound, JCAP, 09, 041, (2016)
[62] M. Alvarez et al., Testing Inflation with Large Scale Structure: Connecting Hopes with Reality, arXiv:1412.4671 [INSPIRE].
[63] A. Loeb and M. Zaldarriaga, Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation, Phys. Rev. Lett.92 (2004) 211301 [astro-ph/0312134] [INSPIRE].
[64] Assassi, V.; Baumann, D.; Pajer, E.; Welling, Y.; Woude, D., Effective theory of large-scale structure with primordial non-gaussianity, JCAP, 11, 024, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.