×

zbMATH — the first resource for mathematics

Loop corrections to standard model fields in inflation. (English) Zbl 1390.83439
Summary: We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

MSC:
83F05 Cosmology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Guth, AH, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev., D 23, 347, (1981) · Zbl 1371.83202
[2] Linde, AD, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett., B 108, 389, (1982)
[3] Albrecht, A.; Steinhardt, PJ, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48, 1220, (1982)
[4] Planck collaboration, P.A.R. Ade et al., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys.571 (2014) A24 [arXiv:1303.5084] [INSPIRE].
[5] CMBPol Study Team collaboration, D. Baumann et al., CMBPol Mission Concept Study: Probing Inflation with CMB Polarization, AIP Conf. Proc.1141 (2009) 10 [arXiv:0811.3919] [INSPIRE].
[6] Matsumura, T.; etal., Mission design of litebird, J. Low Temp. Phys., 176, 733, (2014)
[7] O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].
[8] J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].
[9] Chen, X.; Wang, Y., Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev., D 81, 063511, (2010)
[10] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010)
[11] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[12] Baumann, D.; Green, D., Signatures of supersymmetry from the early universe, Phys. Rev., D 85, 103520, (2012)
[13] Assassi, V.; Baumann, D.; Green, D., On soft limits of inflationary correlation functions, JCAP, 11, 047, (2012)
[14] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110
[15] Chen, X., Primordial non-gaussianities from inflation models, Adv. Astron., 2010, 638979, (2010)
[16] Wang, Y., Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys., 62, 109, (2014) · Zbl 1294.83001
[17] D. Baumann and L. McAllister, Inflation and String Theory, arXiv:1404.2601. · Zbl 1339.83003
[18] Bezrukov, FL; Shaposhnikov, M., The standard model Higgs boson as the inflaton, Phys. Lett., B 659, 703, (2008)
[19] Bezrukov, F., The Higgs field as an inflaton, Class. Quant. Grav., 30, 214001, (2013) · Zbl 1277.83003
[20] X. Chen, Y. Wang and Z. Xianyu, in preparation.
[21] Linde, AD, Scalar field fluctuations in expanding universe and the new inflationary universe scenario, Phys. Lett., B 116, 335, (1982)
[22] Starobinsky, AA, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett., B 117, 175, (1982)
[23] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
[24] Finelli, F.; Marozzi, G.; Starobinsky, AA; Vacca, GP; Venturi, G., Generation of fluctuations during inflation: comparison of stochastic and field-theoretic approaches, Phys. Rev., D 79, 044007, (2009)
[25] Finelli, F.; Marozzi, G.; Starobinsky, AA; Vacca, GP; Venturi, G., Stochastic growth of quantum fluctuations during slow-roll inflation, Phys. Rev., D 82, 064020, (2010)
[26] Burgess, CP; Holman, R.; Tasinato, G., Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP, 01, 153, (2016)
[27] Burgess, CP; Leblond, L.; Holman, R.; Shandera, S., Super-hubble de Sitter fluctuations and the dynamical RG, JCAP, 03, 033, (2010)
[28] Burgess, CP; Holman, R.; Leblond, L.; Shandera, S., Breakdown of semiclassical methods in de Sitter space, JCAP, 10, 017, (2010)
[29] V.K. Onemli and R.P. Woodard, Superacceleration from massless, minimally coupled ϕ\^{4}, Class. Quant. Grav.19 (2002) 4607 [gr-qc/0204065] [INSPIRE]. · Zbl 1023.83025
[30] T. Brunier, V.K. Onemli and R.P. Woodard, Two loop scalar self-mass during inflation, Class. Quant. Grav.22 (2005) 59 [gr-qc/0408080] [INSPIRE]. · Zbl 1060.83060
[31] Kahya, EO; Onemli, VK; Woodard, RP, The ζ-ζ correlator Is time dependent, Phys. Lett., B 694, 101, (2011)
[32] Onemli, VK, Quantum corrected mode function and power spectrum for a scalar field during inflation, Phys. Rev., D 89, 083537, (2014)
[33] Rajaraman, A., On the proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev., D 82, 123522, (2010)
[34] Beneke, M.; Moch, P., On “dynamical mass” generation in Euclidean de Sitter space, Phys. Rev., D 87, 064018, (2013)
[35] Marolf, D.; Morrison, IA, The IR stability of de Sitter: loop corrections to scalar propagators, Phys. Rev., D 82, 105032, (2010)
[36] Marolf, D.; Morrison, IA, The IR stability of de Sitter QFT: results at all orders, Phys. Rev., D 84, 044040, (2011)
[37] Higuchi, A.; Marolf, D.; Morrison, IA, On the equivalence between Euclidean and in-in formalisms in de Sitter QFT, Phys. Rev., D 83, 084029, (2011)
[38] E.T. Akhmedov, IR divergences and kinetic equation in de Sitter space. Poincaré patch: Principal series, JHEP01 (2012) 066 [arXiv:1110.2257] [INSPIRE].
[39] Krotov, D.; Polyakov, AM, Infrared sensitivity of unstable vacua, Nucl. Phys., B 849, 410, (2011) · Zbl 1215.83032
[40] A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
[41] J.I. Kapusta and C. Gale, Finite-Temperature Field Theory, Principles and Applications, second editon, Cambridge University Press (2006). · Zbl 1121.70002
[42] Schwinger, JS, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407, (1961) · Zbl 0098.43503
[43] Jordan, RD, Effective field equations for expectation values, Phys. Rev., D 33, 444, (1986)
[44] Meulen, M.; Smit, J., Classical approximation to quantum cosmological correlations, JCAP, 11, 023, (2007)
[45] B. Garbrecht and T. Prokopec, Fermion mass generation in de Sitter space, Phys. Rev.D 73 (2006) 064036 [gr-qc/0602011] [INSPIRE]. · Zbl 1060.83024
[46] Greene, B.; Parikh, M.; Schaar, JP, Universal correction to the inflationary vacuum, JHEP, 04, 057, (2006)
[47] A.-C. Davis, K. Dimopoulos, T. Prokopec and O. Tornkvist, Primordial spectrum of gauge fields from inflation, Phys. Lett.B 501 (2001) 165 [astro-ph/0007214] [INSPIRE]. · Zbl 0977.83100
[48] T. Prokopec, O. Tornkvist and R.P. Woodard, One loop vacuum polarization in a locally de Sitter background, Annals Phys.303 (2003) 251 [gr-qc/0205130] [INSPIRE]. · Zbl 1028.81043
[49] T. Prokopec, O. Tornkvist and R.P. Woodard, Photon mass from inflation, Phys. Rev. Lett.89 (2002) 101301 [astro-ph/0205331] [INSPIRE].
[50] T. Prokopec and E. Puchwein, Photon mass generation during inflation: de Sitter invariant case, JCAP04 (2004) 007 [astro-ph/0312274] [INSPIRE].
[51] T. Prokopec and R.P. Woodard, Dynamics of superhorizon photons during inflation with vacuum polarization, Annals Phys.312 (2004) 1 [gr-qc/0310056] [INSPIRE]. · Zbl 1074.83011
[52] N.C. Tsamis and R.P. Woodard, The Quantum gravitational back reaction on inflation, Annals Phys.253 (1997) 1 [hep-ph/9602316] [INSPIRE].
[53] N.C. Tsamis and R.P. Woodard, One loop graviton selfenergy in a locally de Sitter background, Phys. Rev.D 54 (1996) 2621 [hep-ph/9602317] [INSPIRE].
[54] Dimastrogiovanni, E.; Bartolo, N., One-loop graviton corrections to the curvature perturbation from inflation, JCAP, 11, 016, (2008)
[55] Bartolo, N.; Dimastrogiovanni, E.; Vallinotto, A., One-loop corrections to the power spectrum in general single-field inflation, JCAP, 11, 003, (2010)
[56] Giddings, SB; Sloth, MS, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP, 01, 023, (2011)
[57] Xue, W.; Gao, X.; Brandenberger, R., IR divergences in inflation and entropy perturbations, JCAP, 06, 035, (2012)
[58] W.H. Kinney, Horizon crossing and inflation with large η, Phys. Rev.D 72 (2005) 023515 [gr-qc/0503017] [INSPIRE].
[59] Namjoo, MH; Firouzjahi, H.; Sasaki, M., Violation of non-gaussianity consistency relation in a single field inflationary model, Europhys. Lett., 101, 39001, (2013)
[60] Chen, X.; Firouzjahi, H.; Namjoo, MH; Sasaki, M., A single field inflation model with large local non-gaussianity, Europhys. Lett., 102, 59001, (2013)
[61] Huang, Q-G; Wang, Y., Large local non-gaussianity from general single-field inflation, JCAP, 06, 035, (2013)
[62] Chen, X.; Firouzjahi, H.; Namjoo, MH; Sasaki, M., Fluid inflation, JCAP, 09, 012, (2013)
[63] Chen, X.; Firouzjahi, H.; Komatsu, E.; Namjoo, MH; Sasaki, M., In-in and δN calculations of the bispectrum from non-attractor single-field inflation, JCAP, 12, 039, (2013)
[64] D.H. Lyth, K.A. Malik and M. Sasaki, A General proof of the conservation of the curvature perturbation, JCAP05 (2005) 004 [astro-ph/0411220] [INSPIRE]. · Zbl 1236.83043
[65] Assassi, V.; Baumann, D.; Green, D., Symmetries and loops in inflation, JHEP, 02, 151, (2013) · Zbl 1342.83224
[66] Senatore, L.; Zaldarriaga, M., On loops in inflation, JHEP, 12, 008, (2010) · Zbl 1294.83099
[67] Senatore, L.; Zaldarriaga, M., On loops in inflation II: IR effects in single clock inflation, JHEP, 01, 109, (2013)
[68] Pimentel, GL; Senatore, L.; Zaldarriaga, M., On loops in inflation III: time independence of zeta in single clock inflation, JHEP, 07, 166, (2012)
[69] Senatore, L.; Zaldarriaga, M., The constancy of ζ in single-clock inflation at all loops, JHEP, 09, 148, (2013)
[70] Weinberg, S., Quantum contributions to cosmological correlations, Phys. Rev., D 72, 043514, (2005)
[71] S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev.D 74 (2006) 023508 [hep-th/0605244] [INSPIRE].
[72] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
[73] Bartolo, N.; Matarrese, S.; Pietroni, M.; Riotto, A.; Seery, D., On the physical significance of infra-red corrections to inflationary observables, JCAP, 01, 015, (2008)
[74] Tsamis, NC; Tzetzias, A.; Woodard, RP, Stochastic samples versus vacuum expectation values in cosmology, JCAP, 09, 016, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.