×

zbMATH — the first resource for mathematics

Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations. (English) Zbl 1390.83426
Summary: We determine the constraints imposed on the 10d target superspace geometry by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the type I case we find that the background must satisfy a generalization of type I supergravity equations. These equations depend on an arbitrary vector \(X_a\) and imply the one-loop scale invariance of the GS sigma model. In the special case when \(X_a\) is the gradient of a scalar \(\phi\) (dilaton) one recovers the standard type I equations equivalent to the 2d Weyl invariance conditions of the superstring sigma model. In the type II case we find a generalized version of the 10d supergravity equations the bosonic part of which was introduced in [G. Arutyunov et al., Nucl. Phys., B 903, 262–303 (2016; Zbl 1332.81167)]. These equations depend on two vectors \(\mathrm{X}_a\) and \(K_a\) subject to 1st order differential relations (with the equations in the NS-NS sector depending only on the combination \(X_a=\mathrm{X}_a+K_a\)). In the special case of \(K_a=0\) one finds that \(\mathrm{X}_a=\partial_a\phi\) and thus obtains the standard type II supergravity equations. New generalized solutions are found if \(K_a\) is chosen to be a Killing vector (and thus they exist only if the metric admits an isometry). Non-trivial solutions of the generalized equations describe \(K\)-isometric backgrounds that can be mapped by T-duality to type II supergravity solutions with dilaton containing a linear isometry-breaking term. Examples of such backgrounds appeared recently in the context of integrable \(\eta\)-deformations of \(\mathrm{AdS}_n\times S^n\) sigma models. The classical kappa-symmetry thus does not, in general, imply the 2d Weyl invariance conditions for the GS sigma model (equivalent to type II supergravity equations) but only weaker scale invariance type conditions.

MSC:
83E50 Supergravity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E., Twistor-like transform in ten-dimensions, Nucl. Phys., B 266, 245, (1986) · Zbl 0608.53068
[2] Grisaru, MT; Howe, PS; Mezincescu, L.; Nilsson, B.; Townsend, PK, \(N\) = 2 superstrings in a supergravity background, Phys. Lett., B 162, 116, (1985)
[3] Howe, PS; West, PC, the complete N = 2, D = 10 supergravity, Nucl. Phys., B 238, 181, (1984)
[4] Shapiro, JA; Taylor, CC, Superspace supergravity from the superstring, Phys. Lett., B 186, 69, (1987)
[5] Berkovits, N.; Howe, PS, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys., B 635, 75, (2002) · Zbl 0996.81075
[6] Berkovits, N., Super Poincaré covariant quantization of the superstring, JHEP, 04, 018, (2000) · Zbl 0959.81065
[7] Bergshoeff, E.; Sezgin, E.; Townsend, PK, Supermembranes and eleven-dimensional supergravity, Phys. Lett., B 189, 75, (1987) · Zbl 1156.81434
[8] Howe, PS, Weyl superspace, Phys. Lett., B 415, 149, (1997)
[9] Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, AA, scale invariance of the η-deformed AdS_{5} × \(S\)\^{}{5}superstring, T-duality and modified type-II equations, Nucl. Phys., B 903, 262, (2016) · Zbl 1332.81167
[10] Callan, CG; Martinec, EJ; Perry, MJ; Friedan, D., Strings in background fields, Nucl. Phys., B 262, 593, (1985)
[11] Hull, CM; Townsend, PK, Finiteness and conformal invariance in nonlinear σ models, Nucl. Phys., B 274, 349, (1986)
[12] Tseytlin, AA, Conformal anomaly in two-dimensional σ-model on curved background and strings, Phys. Lett., B 178, 34, (1986)
[13] Shore, GM, A local renormalization group equation, diffeomorphisms and conformal invariance in σ models, Nucl. Phys., B 286, 349, (1987)
[14] Nilsson, BEW, Simple ten-dimensional supergravity in superspace, Nucl. Phys., B 188, 176, (1981)
[15] Wulff, L., the type-II superstring to order θ\^{}{4}, JHEP, 07, 123, (2013) · Zbl 1342.83436
[16] Borsato, R.; Tseytlin, AA; Wulff, L., supergravity background of λ-deformed model for AdS_{2} × \(S\)\^{}{2}supercoset, Nucl. Phys., B 905, 264, (2016) · Zbl 1332.81170
[17] C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
[18] Delduc, F.; Magro, M.; Vicedo, B., an integrable deformation of the AdS_{5} × \(S\)\^{}{5}superstring action, Phys. Rev. Lett., 112, 051601, (2014) · Zbl 1333.81322
[19] Arutyunov, G.; Borsato, R.; Frolov, S., puzzles of η-deformed AdS_{5} × \(S\)\^{}{5}, JHEP, 12, 049, (2015) · Zbl 1388.83726
[20] Hollowood, TJ; Miramontes, JL; Schmidtt, DM, an integrable deformation of the AdS_{5} × \(S\)\^{}{5}superstring, J. Phys., A 47, 495402, (2014) · Zbl 1305.81120
[21] H. Kyono and K. Yoshida, Supercoset construction of Yang-Baxter deformed AdS_{5} × \(S\)\^{}{5}backgrounds, arXiv:1605.02519 [INSPIRE]. · Zbl 1361.81128
[22] B. Hoare and S.J. van Tongeren, On Jordanian deformations of AdS_{5}and supergravity, arXiv:1605.03554 [INSPIRE]. · Zbl 1352.81050
[23] Demulder, S.; Sfetsos, K.; Thompson, DC, integrable λ-deformations: squashing coset CFTs and AdS_{5} × \(S\)\^{}{5}, JHEP, 07, 019, (2015) · Zbl 1388.83790
[24] Sfetsos, K.; Thompson, DC, Spacetimes for λ-deformations, JHEP, 12, 164, (2014)
[25] Hoare, B.; Tseytlin, AA, type IIB supergravity solution for the T-dual of the η-deformed AdS_{5} × \(S\)\^{}{5}superstring, JHEP, 10, 060, (2015) · Zbl 1388.83824
[26] Hoare, B.; Tseytlin, AA, on integrable deformations of superstring σ-models related to AdS_{\(n\)} × \(S\)\^{}{\(n\)}supercosets, Nucl. Phys., B 897, 448, (2015) · Zbl 1329.81317
[27] Kulik, B.; Roiban, R., T duality of the Green-Schwarz superstring, JHEP, 09, 007, (2002)
[28] Sorokin, DP, Superbranes and superembeddings, Phys. Rept., 329, 1, (2000) · Zbl 1006.83056
[29] Dragon, N., Torsion and curvature in extended supergravity, Z. Phys., C 2, 29, (1979)
[30] Wulff, L., On integrability of strings on symmetric spaces, JHEP, 09, 115, (2015) · Zbl 1388.81611
[31] Howe, PS; Umerski, A., On superspace supergravity in ten-dimensions, Phys. Lett., B 177, 163, (1986)
[32] Mikhailov, A., Cornering the unphysical vertex, JHEP, 11, 082, (2012)
[33] Mikhailov, A., Vertex operators of ghost number three in type IIB supergravity, Nucl. Phys., B 907, 509, (2016) · Zbl 1336.81074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.