×

zbMATH — the first resource for mathematics

The exceptional story of massive IIA supergravity. (English) Zbl 1390.83387
Summary: The framework of exceptional field theory is extended by introducing consistent deformations of its generalised Lie derivative. For the first time, massive type IIA super-gravity is reproduced geometrically as a solution of the section constraint. This provides a unified description of all ten- and eleven-dimensional maximal supergravities. The actionof the \(E_{7(7)}\) deformed theory is constructed, and reduces to those of exceptional field theory and gauged maximal supergravity in respective limits. The relation of this new framework to other approaches for generating the Romans mass non-geometrically is discussed.

MSC:
83E50 Supergravity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hohm, O.; Samtleben, H., Exceptional field theory I: E_{6(6)} covariant form of M-theory and type IIB, Phys. Rev., D 89, 066016, (2014)
[2] Hohm, O.; Samtleben, H., Exceptional field theory II: E_{7(7)}, Phys. Rev., D 89, 066017, (2014)
[3] Hohm, O.; Samtleben, H., Exceptional field theory III: E_{8(8)}, Phys. Rev., D 90, 066002, (2014)
[4] Hohm, O.; Wang, Y-N, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP, 04, 050, (2015) · Zbl 1388.83826
[5] Abzalov, A.; Bakhmatov, I.; Musaev, ET, Exceptional field theory: SO(5, 5), JHEP, 06, 088, (2015) · Zbl 1388.83706
[6] Musaev, ET, Exceptional field theory: SL(5), JHEP, 02, 012, (2016) · Zbl 1388.83867
[7] D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2) × \(ℝ\)\^{}{+}exceptional field theory, arXiv:1512.06115 [INSPIRE]. · Zbl 1349.83061
[8] Romans, LJ, Massive N = 2a supergravity in ten-dimensions, Phys. Lett., B 169, 374, (1986)
[9] Coimbra, A.; Strickland-Constable, C.; Waldram, D., \(E\)_{\(d\)(\(d\))} × \(ℝ\)\^{}{+} generalised geometry, connections and M-theory, JHEP, 02, 054, (2014) · Zbl 1333.83220
[10] Coimbra, A.; Strickland-Constable, C.; Waldram, D., Supergravity as generalised geometry II: \(E\)_{\(d\)(\(d\))} × \(ℝ\)\^{}{+} and M-theory, JHEP, 03, 019, (2014) · Zbl 1333.83220
[11] Hohm, O.; Samtleben, H., Consistent Kaluza-Klein truncations via exceptional field theory, JHEP, 01, 131, (2015) · Zbl 1388.83825
[12] Baguet, A.; Hohm, O.; Samtleben, H., Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev., D 92, 065004, (2015)
[13] Malek, E.; Samtleben, H., Dualising consistent IIA/IIB truncations, JHEP, 12, 029, (2015) · Zbl 1388.83623
[14] Bossard, G.; Kleinschmidt, A., Loops in exceptional field theory, JHEP, 01, 164, (2016) · Zbl 1388.81402
[15] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074, (2011) · Zbl 1298.81244
[16] Berman, DS; Cederwall, M.; Kleinschmidt, A.; Thompson, DC, The gauge structure of generalised diffeomorphisms, JHEP, 01, 064, (2013)
[17] Blair, CDA; Malek, E.; Park, J-H, M-theory and type IIB from a duality manifest action, JHEP, 01, 172, (2014)
[18] Bandos, I., On section conditions of E_{7(+7)} exceptional field theory and superparticle in N = 8 central charge superspace, JHEP, 01, 132, (2016) · Zbl 1388.81956
[19] Hohm, O.; Kwak, SK, Massive type II in double field theory, JHEP, 11, 086, (2011) · Zbl 1306.81248
[20] Behrndt, K.; Cvetič, M., General N = 1 supersymmetric flux vacua of (massive) type IIA string theory, Phys. Rev. Lett., 95, 021601, (2005) · Zbl 1160.81437
[21] Behrndt, K.; Cvetič, M., General N = 1 supersymmetric fluxes in massive type IIA string theory, Nucl. Phys., B 708, 45, (2005) · Zbl 1160.81437
[22] Lüst, D.; Tsimpis, D., Supersymmetric ads_{4} compactifications of IIA supergravity, JHEP, 02, 027, (2005)
[23] Schwarz, JH, Superconformal Chern-Simons theories, JHEP, 11, 078, (2004)
[24] Guarino, A.; Jafferis, DL; Varela, O., String theory origin of dyonic N = 8 supergravity and its Chern-Simons duals, Phys. Rev. Lett., 115, 091601, (2015)
[25] Gaiotto, D.; Tomasiello, A., The gauge dual of Romans mass, JHEP, 01, 015, (2010) · Zbl 1269.81126
[26] Gaiotto, D.; Tomasiello, A., Perturbing gauge/gravity duals by a Romans mass, J. Phys., A 42, 465205, (2009) · Zbl 1181.83204
[27] Guarino, A.; Varela, O., Consistent N = 8 truncation of massive IIA on S\^{}{6}, JHEP, 12, 020, (2015) · Zbl 1388.81412
[28] Guarino, A.; Varela, O., Dyonic ISO(7) supergravity and the duality hierarchy, JHEP, 02, 079, (2016) · Zbl 1388.83815
[29] Dall’Agata, G.; Inverso, G., On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys., B 859, 70, (2012) · Zbl 1246.83217
[30] Dall’Agata, G.; Inverso, G.; Trigiante, M., Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett., 109, 201301, (2012)
[31] Dall’Agata, G.; Inverso, G.; Marrani, A., Symplectic deformations of gauged maximal supergravity, JHEP, 07, 133, (2014) · Zbl 1333.83226
[32] Inverso, G., Electric-magnetic deformations of D = 4 gauged supergravities, JHEP, 03, 138, (2016) · Zbl 1388.83830
[33] Nicolai, H.; Samtleben, H., Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett., 86, 1686, (2001)
[34] Wit, B.; Samtleben, H.; Trigiante, M., The maximal D = 4 supergravities, JHEP, 06, 049, (2007) · Zbl 1207.83073
[35] Wit, B.; Samtleben, H.; Trigiante, M., The maximal D = 5 supergravities, Nucl. Phys., B 716, 215, (2005) · Zbl 1207.83073
[36] Bergshoeff, E.; Samtleben, H.; Sezgin, E., The gaugings of maximal D = 6 supergravity, JHEP, 03, 068, (2008)
[37] Samtleben, H.; Weidner, M., The maximal D = 7 supergravities, Nucl. Phys., B 725, 383, (2005) · Zbl 1178.83063
[38] D. Puigdomènech, Embedding tensor approach to maximal D = 8 supergravity, master thesis, http://thep.housing.rug.nl/theses, University of Groningen, Groningen The Netherlands (2008).
[39] Fernandez-Melgarejo, JJ; Ortín, T.; Torrente-Lujan, E., the general gaugings of maximal D = 9 supergravity, JHEP, 10, 068, (2011) · Zbl 1303.81161
[40] Samtleben, H., Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav., 25, 214002, (2008) · Zbl 1152.83306
[41] Abou-Zeid, M.; Wit, B.; Lüst, D.; Nicolai, H., Space-time supersymmetry, IIA/B duality and M-theory, Phys. Lett., B 466, 144, (1999) · Zbl 0987.81087
[42] Hohm, O.; Samtleben, H., Exceptional form of D = 11 supergravity, Phys. Rev. Lett., 111, 231601, (2013)
[43] Wit, B.; Samtleben, H., Gauged maximal supergravities and hierarchies of non-abelian vector-tensor systems, Fortsch. Phys., 53, 442, (2005) · Zbl 1069.83509
[44] Wit, B.; Nicolai, H.; Samtleben, H., Gauged supergravities, tensor hierarchies and M-theory, JHEP, 02, 044, (2008)
[45] Wang, Y-N, Generalized Cartan calculus in general dimension, JHEP, 07, 114, (2015) · Zbl 1388.83699
[46] Bandos, IA; Nurmagambetov, AJ; Sorokin, DP, Various faces of type IIA supergravity, Nucl. Phys., B 676, 189, (2004) · Zbl 1097.83539
[47] Godazgar, H.; Godazgar, M.; Nicolai, H., Generalised geometry from the ground up, JHEP, 02, 075, (2014) · Zbl 1333.83237
[48] Ciceri, F.; Wit, B.; Varela, O., IIB supergravity and the E_{6(6)} covariant vector-tensor hierarchy, JHEP, 04, 094, (2015) · Zbl 1387.83101
[49] Diffon, A.; Samtleben, H., Supergravities without an action: gauging the trombone, Nucl. Phys., B 811, 1, (2009) · Zbl 1194.83100
[50] Diffon, A.; Samtleben, H.; Trigiante, M., N = 8 supergravity with local scaling symmetry, JHEP, 04, 079, (2011) · Zbl 1250.83059
[51] E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non)Abelian gauged supergravities in nine-dimensions, JHEP10 (2002) 061 [hep-th/0209205] [INSPIRE]. · Zbl 1036.83026
[52] Nishino, H.; Rajpoot, S., Gauged N = 2 supergravity in nine-dimensions and domain wall solutions, Phys. Lett., B 546, 261, (2002) · Zbl 0999.83063
[53] Bergshoeff, E.; Roo, M.; Green, MB; Papadopoulos, G.; Townsend, PK, Duality of type-II 7 branes and 8 branes, Nucl. Phys., B 470, 113, (1996) · Zbl 1003.81532
[54] Baron, WH, Gaugings from E_{7(7)} extended geometries, Phys. Rev., D 91, 024008, (2015)
[55] Freund, PGO; Rubin, MA, Dynamics of dimensional reduction, Phys. Lett., B 97, 233, (1980)
[56] Aldazabal, G.; Andres, E.; Camara, PG; Graña, M., U-dual fluxes and generalized geometry, JHEP, 11, 083, (2010) · Zbl 1294.81151
[57] Blair, CDA; Malek, E., Geometry and fluxes of SL(5) exceptional field theory, JHEP, 03, 144, (2015) · Zbl 1388.83749
[58] P. Meessen and T. Ortín, An SL(2, Z) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys.B 541 (1999) 195 [hep-th/9806120] [INSPIRE].
[59] Dall’Agata, G.; Lechner, K.; Tonin, M., D = 10, N = IIB supergravity: Lorentz invariant actions and duality, JHEP, 07, 017, (1998) · Zbl 0951.83055
[60] Scherk, J.; Schwarz, JH, How to get masses from extra dimensions, Nucl. Phys., B 153, 61, (1979)
[61] Berman, DS; Musaev, ET; Thompson, DC; Thompson, DC, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP, 10, 174, (2012)
[62] Aldazabal, G.; Graña, M.; Marqués, D.; Rosabal, JA, Extended geometry and gauged maximal supergravity, JHEP, 06, 046, (2013) · Zbl 1342.83439
[63] K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
[64] Cederwall, M.; Edlund, J.; Karlsson, A., Exceptional geometry and tensor fields, JHEP, 07, 028, (2013) · Zbl 1342.83458
[65] Graña, M.; Marques, D., Gauged double field theory, JHEP, 04, 020, (2012) · Zbl 1348.81368
[66] Wit, B.; Samtleben, H., The end of the p-form hierarchy, JHEP, 08, 015, (2008)
[67] E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge theories, duality relations and the tensor hierarchy, JHEP04 (2009) 123 [arXiv:0901.2054] [INSPIRE].
[68] Cvetič, M.; Lü, H.; Pope, CN; Sadrzadeh, A.; Tran, TA, S\^{}{3} and S\^{}{4} reductions of type IIA supergravity, Nucl. Phys., B 590, 233, (2000) · Zbl 1006.83072
[69] Godazgar, H.; Godazgar, M.; Hohm, O.; Nicolai, H.; Samtleben, H., Supersymmetric E_{7(7)} exceptional field theory, JHEP, 09, 044, (2014) · Zbl 1333.81172
[70] Musaev, E.; Samtleben, H., Fermions and supersymmetry in E_{6(6)} exceptional field theory, JHEP, 03, 027, (2015) · Zbl 1388.81155
[71] Hohm, O.; Kwak, SK, Double field theory formulation of heterotic strings, JHEP, 06, 096, (2011) · Zbl 1298.81301
[72] Rosabal, JA, On the exceptional generalised Lie derivative for d ≥ 7, JHEP, 09, 153, (2015) · Zbl 1388.81600
[73] D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, arXiv:1605.00563 [INSPIRE]. · Zbl 1390.83310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.