×

zbMATH — the first resource for mathematics

Cosmological perturbation theory and quantum gravity. (English) Zbl 1390.83059
Summary: It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

MSC:
83C45 Quantization of the gravitational field
83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second order cosmological perturbations from inflation, Nucl. Phys.B 667 (2003) 119 [astro-ph/0209156] [INSPIRE]. · Zbl 1038.83046
[2] Brunetti, R.; Fredenhagen, K.; Rejzner, K., Quantum gravity from the point of view of locally covariant quantum field theory, Commun. Math. Phys., 345, 741, (2016) · Zbl 1346.83001
[3] R. Brunetti, K. Fredenhagen, T.-P. Hack, N. Pinamonti and K. Rejzner, in preparation.
[4] N. Bartolo, S. Matarrese and A. Riotto, CMB Anisotropies at Second-Order. 2. Analytical Approach, JCAP01 (2007) 019 [astro-ph/0610110] [INSPIRE].
[5] J.D. Brown and K.V. Kuchar, Dust as a standard of space and time in canonical quantum gravity, Phys. Rev.D 51 (1995) 5600 [gr-qc/9409001] [INSPIRE].
[6] M. Bruni, S. Matarrese, S. Mollerach and S. Sonego, Perturbations of space-time: Gauge transformations and gauge invariance at second order and beyond, Class. Quant. Grav.14 (1997) 2585 [gr-qc/9609040] [INSPIRE]. · Zbl 0885.53080
[7] B. Dittrich, Partial and complete observables for canonical general relativity, Class. Quant. Grav.23 (2006) 6155 [gr-qc/0507106] [INSPIRE]. · Zbl 1111.83015
[8] B. Dittrich and J. Tambornino, Gauge invariant perturbations around symmetry reduced sectors of general relativity: Applications to cosmology, Class. Quant. Grav.24 (2007) 4543 [gr-qc/0702093] [INSPIRE]. · Zbl 1128.83014
[9] M. Duetsch and K. Fredenhagen, Perturbative algebraic field theory and deformation quantization, Submitted to: Fields Inst. Commun. (2000) 151 [hep-th/0101079] [INSPIRE].
[10] B. Eltzner, Quantization of Perturbations in Inflation, arXiv:1302.5358 [INSPIRE].
[11] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in the functional approach to classical field theory, Commun. Math. Phys., 314, 93, (2012) · Zbl 1418.70034
[12] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 697, (2013) · Zbl 1263.81245
[13] K. Fredenhagen, R. Rejzner Perturbative Construction of Models of Algebraic Quantum Field Theory, in Advances in algebraic quantum field theory, R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason eds., Springer (2015), arXiv:1503.07814. · Zbl 1334.81059
[14] Hack, T-P, Quantization of the linearized Einstein-Klein-Gordon system on arbitrary backgrounds and the special case of perturbations in inflation, Class. Quant. Grav., 31, 215004, (2014) · Zbl 1304.83034
[15] Hollands, S., Renormalized quantum Yang-Mills fields in curved spacetime, Rev. Math. Phys., 20, 1033, (2008) · Zbl 1161.81022
[16] Khavkine, I., Local and gauge invariant observables in gravity, Class. Quant. Grav., 32, 185019, (2015) · Zbl 1327.83125
[17] Langlois, D.; Vernizzi, F., A geometrical approach to nonlinear perturbations in relativistic cosmology, Class. Quant. Grav., 27, 124007, (2010) · Zbl 1190.83123
[18] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[19] Malik, KA; Wands, D., Cosmological perturbations, Phys. Rept., 475, 1, (2009)
[20] V.F. Mukhanov, CMB-slow, or how to estimate cosmological parameters by hand, Int. J. Theor. Phys.43 (2004) 623 [astro-ph/0303072] [INSPIRE]. · Zbl 1064.85019
[21] K. Nakamura, Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables, Prog. Theor. Phys.117 (2007) 17 [gr-qc/0605108] [INSPIRE]. · Zbl 1125.83016
[22] Nakamura, K., Recursive structure in the definitions of gauge-invariant variables for any order perturbations, Class. Quant. Grav., 31, 135013, (2014) · Zbl 1295.83062
[23] Noh, H.; Hwang, J-c, Second-order perturbations of the Friedmann world model, Phys. Rev., D 69, 104011, (2004)
[24] Hwang, J-c; Noh, H., Fully nonlinear and exact perturbations of the Friedmann world model, Mon. Not. Roy. Astron. Soc., 433, 3472, (2013)
[25] Prokopec, T.; Weenink, J., Uniqueness of the gauge invariant action for cosmological perturbations, JCAP, 12, 031, (2012)
[26] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev., D 57, 971, (1998)
[27] Reuter, M.; Saueressig, F., Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev., D 65, 065016, (2002)
[28] C. Rovelli, Partial observables, Phys. Rev.D 65 (2002) 124013 [gr-qc/0110035] [INSPIRE].
[29] S. Sonego and M. Bruni, Gauge dependence in the theory of nonlinear space-time perturbations, Commun. Math. Phys.193 (1998) 209 [gr-qc/9708068] [INSPIRE]. · Zbl 0905.53057
[30] T. Thiemann, Reduced phase space quantization and Dirac observables, Class. Quant. Grav.23 (2006) 1163 [gr-qc/0411031] [INSPIRE]. · Zbl 1091.83014
[31] F. Vernizzi, On the conservation of second-order cosmological perturbations in a scalar field dominated Universe, Phys. Rev.D 71 (2005) 061301 [astro-ph/0411463] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.