zbMATH — the first resource for mathematics

Scattering amplitudes over finite fields and multivariate functional reconstruction. (English) Zbl 1390.81631
Summary: Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.

81U10 \(n\)-body potential quantum scattering theory
Full Text: DOI
[1] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[2] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[3] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Reiter, T., golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun., 180, 2317, (2009) · Zbl 1197.81004
[4] Cullen, G.; etal., golem95C: a library for one-loop integrals with complex masses, Comput. Phys. Commun., 182, 2276, (2011) · Zbl 1223.81172
[5] Guillet, JP; Heinrich, G.; Soden-Fraunhofen, JF, tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun., 185, 1828, (2014) · Zbl 1348.81018
[6] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010) · Zbl 1290.81151
[7] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE]. · Zbl 1331.81218
[8] Peraro, T., Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, Comput. Phys. Commun., 185, 2771, (2014) · Zbl 1360.81021
[9] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based complex one-loop library in extended regularizations, arXiv:1604.06792 [INSPIRE]. · Zbl 1376.81070
[10] Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[11] Bevilacqua, G.; etal., Helac-nlo, Comput. Phys. Commun., 184, 986, (2013)
[12] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[13] Hirschi, V.; Frederix, R.; Frixione, S.; Garzelli, MV; Maltoni, F.; Pittau, R., Automation of one-loop QCD corrections, JHEP, 05, 044, (2011) · Zbl 1296.81138
[14] Cullen, G.; etal., Automated one-loop calculations with gosam, Eur. Phys. J., C 72, 1889, (2012)
[15] G. Cullen et al., GoSam\(-\)2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J.C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
[16] Cascioli, F.; Maierhofer, P.; Pozzorini, S., Scattering amplitudes with open loops, Phys. Rev. Lett., 108, 111601, (2012)
[17] Badger, S.; Biedermann, B.; Uwer, P., Ngluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun., 182, 1674, (2011) · Zbl 1262.81102
[18] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun., 184, 1981, (2013)
[19] S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE]. · Zbl 1376.81069
[20] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. · Zbl 1356.81169
[21] Papadopoulos, CG; Tommasini, D.; Wever, C., The pentabox master integrals with the simplified differential equations approach, JHEP, 04, 078, (2016)
[22] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[23] Britto, R.; Cachazo, F.; Feng, B., generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005) · Zbl 1178.81202
[24] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008) · Zbl 1246.81170
[25] Manteuffel, A.; Schabinger, RM, A novel approach to integration by parts reduction, Phys. Lett., B 744, 101, (2015) · Zbl 1330.81151
[26] Kotsireas, I.; Mourrain, B.; Pan, V.; Cuyt, A.; Shin Lee, W., Symbolic and numerical algorithms sparse interpolation of multivariate rational functions, Theor. Comput. Sci., 412, 1445, (2011)
[27] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[28] Mastrolia, P.; Ossola, G., On the integrand-reduction method for two-loop scattering amplitudes, JHEP, 11, 014, (2011) · Zbl 1306.81357
[29] Badger, S.; Frellesvig, H.; Zhang, Y., Hepta-cuts of two-loop scattering amplitudes, JHEP, 04, 055, (2012) · Zbl 1348.81340
[30] Zhang, Y., Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP, 09, 042, (2012)
[31] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Scattering amplitudes from multivariate polynomial division, Phys. Lett., B 718, 173, (2012) · Zbl 1331.81218
[32] Badger, S.; Frellesvig, H.; Zhang, Y., An integrand reconstruction method for three-loop amplitudes, JHEP, 08, 065, (2012)
[33] Kleiss, RHP; Malamos, I.; Papadopoulos, CG; Verheyen, R., Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP, 12, 038, (2012)
[34] Feng, B.; Huang, R., The classification of two-loop integrand basis in pure four-dimension, JHEP, 02, 117, (2013) · Zbl 1342.81228
[35] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, Phys. Rev., D 87, 085026, (2013) · Zbl 1331.81218
[36] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Multiloop integrand reduction for dimensionally regulated amplitudes, Phys. Lett., B 727, 532, (2013) · Zbl 1331.81218
[37] Badger, S.; Frellesvig, H.; Zhang, Y., A two-loop five-gluon helicity amplitude in QCD, JHEP, 12, 045, (2013)
[38] Mastrolia, P.; Peraro, T.; Primo, A., Adaptive integrand decomposition in parallel and orthogonal space, JHEP, 08, 164, (2016) · Zbl 1390.81180
[39] Kosower, DA; Larsen, KJ, Maximal unitarity at two loops, Phys. Rev., D 85, 045017, (2012)
[40] Larsen, KJ, global poles of the two-loop six-point N = 4 SYM integrand, Phys. Rev., D 86, 085032, (2012)
[41] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026, (2012)
[42] Johansson, H.; Kosower, DA; Larsen, KJ, Two-loop maximal unitarity with external masses, Phys. Rev., D 87, 025030, (2013)
[43] Johansson, H.; Kosower, DA; Larsen, KJ, Maximal unitarity for the four-mass double box, Phys. Rev., D 89, 125010, (2014)
[44] Johansson, H.; Kosower, DA; Larsen, KJ; Søgaard, M., Cross-order integral relations from maximal cuts, Phys. Rev., D 92, 025015, (2015)
[45] H. Ita, Two-loop integrand decomposition into master integrals and surface terms, arXiv:1510.05626 [INSPIRE].
[46] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev., D 93, 041701, (2016)
[47] Badger, S.; Mogull, G.; Ochirov, A.; O’Connell, D., A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory, JHEP, 10, 064, (2015) · Zbl 1388.81274
[48] Badger, S.; Mogull, G.; Peraro, T., Local integrands for two-loop all-plus Yang-Mills amplitudes, JHEP, 08, 063, (2016) · Zbl 1390.81278
[49] Mangano, ML; Parke, SJ; Xu, Z., Duality and multi-gluon scattering, Nucl. Phys., B 298, 653, (1988)
[50] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[51] Cheung, C.; O’Connell, D., Amplitudes and spinor-helicity in six dimensions, JHEP, 07, 075, (2009)
[52] Bern, Z.; Carrasco, JJ; Dennen, T.; Huang, Y-T; Ita, H., Generalized unitarity and six-dimensional helicity, Phys. Rev., D 83, 085022, (2011)
[53] Davies, S., One-loop QCD and Higgs to partons processes using six-dimensional helicity and generalized unitarity, Phys. Rev., D 84, 094016, (2011)
[54] P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the Fourth ACM Symposium on Symbolic and Algebraic Computation, SYMSAC\^{}{′}81, ACM, New York NY U.S.A. 1981, pg. 212. · Zbl 0486.68026
[55] M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Dover Publications, New York NY U.S.A. (1964). · Zbl 0171.38503
[56] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes, JHEP, 05, 135, (2013) · Zbl 1342.81291
[57] S. Badger, Automating QCD amplitudes with on-shell methods, in 17\^{}{th}International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT 2016\()\), Valparaiso Chile January 18-22 2016 [J. Phys. Conf. Ser.762 (2016) 012057] [arXiv:1605.02172] [INSPIRE].
[58] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
[59] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.