×

zbMATH — the first resource for mathematics

Multi-Regge kinematics and the moduli space of Riemann spheres with marked points. (English) Zbl 1390.81627
Summary: We show that scattering amplitudes in planar \( \mathcal{N}=4 \) Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at \(L\) loops all MHV amplitudes are determined by amplitudes with up to \(L+ 4\) external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.

MSC:
81U10 \(n\)-body potential quantum scattering theory
Software:
Nestedsums; XSummer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Drummond, JM; Henn, J.; Smirnov, VA; Sokatchev, E., Magic identities for conformal four-point integrals, JHEP, 01, 064, (2007)
[2] Bern, Z.; Czakon, M.; Dixon, LJ; Kosower, DA; Smirnov, VA, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev., D 75, 085010, (2007)
[3] Bern, Z.; Carrasco, JJM; Johansson, H.; Kosower, DA, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev., D 76, 125020, (2007)
[4] Alday, LF; Maldacena, JM, Gluon scattering amplitudes at strong coupling, JHEP, 06, 064, (2007)
[5] Drummond, JM; Korchemsky, GP; Sokatchev, E., Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys., B 795, 385, (2008) · Zbl 1219.81227
[6] Brandhuber, A.; Heslop, P.; Travaglini, G., MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys., B 794, 231, (2008) · Zbl 1273.81201
[7] Drummond, JM; Henn, JM; Plefka, J., Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP, 05, 046, (2009)
[8] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., On planar gluon amplitudes/Wilson loops duality, Nucl. Phys., B 795, 52, (2008) · Zbl 1219.81191
[9] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys., B 826, 337, (2010) · Zbl 1203.81175
[10] Bern, Z.; Dixon, LJ; Smirnov, VA, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev., D 72, 085001, (2005)
[11] Beisert, N.; Eden, B.; Staudacher, M., Transcendentality and crossing, J. Stat. Mech., 0701, p01021, (2007)
[12] Bern, Z.; etal., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev., D 78, 045007, (2008)
[13] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys., B 815, 142, (2009) · Zbl 1194.81316
[14] Alday, LF; Maldacena, J., Comments on gluon scattering amplitudes via AdS/CFT, JHEP, 11, 068, (2007) · Zbl 1245.81256
[15] Berkovits, N.; Maldacena, J., Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP, 09, 062, (2008) · Zbl 1245.81267
[16] Caron-Huot, S., Notes on the scattering amplitude/Wilson loop duality, JHEP, 07, 058, (2011) · Zbl 1298.81357
[17] Mason, LJ; Skinner, D., The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP, 12, 018, (2010) · Zbl 1294.81122
[18] Alday, LF; Gaiotto, D.; Maldacena, J.; Sever, A.; Vieira, P., An operator product expansion for polygonal null Wilson loops, JHEP, 04, 088, (2011) · Zbl 1250.81071
[19] Gaiotto, D.; Maldacena, J.; Sever, A.; Vieira, P., Bootstrapping null polygon Wilson loops, JHEP, 03, 092, (2011) · Zbl 1301.81125
[20] Gaiotto, D.; Maldacena, J.; Sever, A.; Vieira, P., Pulling the straps of polygons, JHEP, 12, 011, (2011) · Zbl 1306.81153
[21] Sever, A.; Vieira, P.; Wang, T., OPE for super loops, JHEP, 11, 051, (2011) · Zbl 1306.81362
[22] Basso, B., Exciting the GKP string at any coupling, Nucl. Phys., B 857, 254, (2012) · Zbl 1246.81206
[23] Basso, B.; Sever, A.; Vieira, P., Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett., 111, 091602, (2013)
[24] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
[25] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
[26] Basso, B.; Sever, A.; Vieira, P., Collinear limit of scattering amplitudes at strong coupling, Phys. Rev. Lett., 113, 261604, (2014)
[27] B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, JHEP09 (2014) 149 [arXiv:1407.1736] [INSPIRE].
[28] Basso, B.; Caetano, J.; Cordova, L.; Sever, A.; Vieira, P., OPE for all helicity amplitudes, JHEP, 08, 018, (2015) · Zbl 1388.81277
[29] B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes II. Form factors and data analysis, JHEP12 (2015) 088 [arXiv:1508.02987] [INSPIRE]. · Zbl 1388.81278
[30] B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, arXiv:1508.03045 [INSPIRE]. · Zbl 1349.81170
[31] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes, JHEP, 05, 135, (2013) · Zbl 1342.81291
[32] Golden, J.; Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Motivic amplitudes and cluster coordinates, JHEP, 01, 091, (2014)
[33] Chen, K-T, Iterated path integrals, Bull. Am. Math. Soc., 83, 831, (1977) · Zbl 0389.58001
[34] Golden, J.; Paulos, MF; Spradlin, M.; Volovich, A., Cluster polylogarithms for scattering amplitudes, J. Phys., A 47, 474005, (2014) · Zbl 1304.81123
[35] S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc.15 (2002) 497 [math/0104151]. · Zbl 1021.16017
[36] S. Fomin and A. Zelevinsky, Cluster algebras II: finite type classification, Invent. Math.154 (2003) 63 [math/0208229]. · Zbl 1054.17024
[37] Scott, JS, Grassmannians and cluster algebras, Proc. Lond. Math. Soc., 92, 345, (2006) · Zbl 1088.22009
[38] M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003) 899 [math/0208033]. · Zbl 1057.53064
[39] B. Keller, Cluster algebras, quiver representations and triangulated categories, in Triangulated categories, Cambridge University Press, Cambridge U.K. (2003). · Zbl 1215.16012
[40] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
[41] F.C.S. Brown, Multiple zeta values and periods of moduli spaces ℳ_{0,\(n\)}(\(ℝ\)), Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE].
[42] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering amplitudes and the positive Grassmannian, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1365.81004
[43] Duca, V.; Duhr, C.; Smirnov, VA, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP, 03, 099, (2010) · Zbl 1271.81104
[44] Duca, V.; Duhr, C.; Smirnov, VA, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP, 05, 084, (2010) · Zbl 1287.81080
[45] Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett., 105, 151605, (2010)
[46] Dixon, LJ; Drummond, JM; Henn, JM, Bootstrapping the three-loop hexagon, JHEP, 11, 023, (2011) · Zbl 1306.81092
[47] Dixon, LJ; Drummond, JM; Henn, JM, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP, 01, 024, (2012) · Zbl 1306.81093
[48] Dixon, LJ; Drummond, JM; Hippel, M.; Pennington, J., Hexagon functions and the three-loop remainder function, JHEP, 12, 049, (2013) · Zbl 1342.81159
[49] Dixon, LJ; Hippel, M., Bootstrapping an NMHV amplitude through three loops, JHEP, 10, 065, (2014)
[50] Dixon, LJ; Drummond, JM; Duhr, C.; Pennington, J., The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP, 06, 116, (2014) · Zbl 1333.81238
[51] Dixon, LJ; Hippel, M.; McLeod, AJ, The four-loop six-gluon NMHV ratio function, JHEP, 01, 053, (2016)
[52] Golden, J.; Spradlin, M., An analytic result for the two-loop seven-point MHV amplitude in N = 4 SYM, JHEP, 08, 154, (2014)
[53] Duca, V.; Duhr, C.; Smirnov, VA, A two-loop octagon Wilson loop in N = 4 SYM, JHEP, 09, 015, (2010) · Zbl 1291.81240
[54] Heslop, P.; Khoze, VV, Analytic results for MHV Wilson loops, JHEP, 11, 035, (2010) · Zbl 1294.81112
[55] Caron-Huot, S.; He, S., Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, JHEP, 08, 101, (2013) · Zbl 1342.81560
[56] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE]. · Zbl 1360.11077
[57] Duhr, C.; Gangl, H.; Rhodes, JR, From polygons and symbols to polylogarithmic functions, JHEP, 10, 075, (2012)
[58] Caron-Huot, S., Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP, 12, 066, (2011) · Zbl 1306.81082
[59] Drummond, JM; Papathanasiou, G.; Spradlin, M., A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP, 03, 072, (2015)
[60] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026, (2012)
[61] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP44 (1976) 443 [Zh. Eksp. Teor. Fiz.71 (1976) 840] [INSPIRE].
[62] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP45 (1977) 199 [Zh. Eksp. Teor. Fiz.72 (1977) 377] [INSPIRE].
[63] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys.28 (1978) 822 [Yad. Fiz.28 (1978) 1597] [INSPIRE].
[64] V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett.B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].
[65] G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel, Phys. Lett.B 412 (1997) 396 [Erratum ibid.B 417 (1998) 390] [hep-ph/9707390] [INSPIRE].
[66] M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett.B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].
[67] Bartels, J.; Lipatov, LN; Sabio Vera, A., BFKL pomeron, reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev., D 80, 045002, (2009)
[68] Bartels, J.; Lipatov, LN; Sabio Vera, A., N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J., C 65, 587, (2010)
[69] Brower, RC; Nastase, H.; Schnitzer, HJ; Tan, C-I, Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture, Nucl. Phys., B 814, 293, (2009) · Zbl 1194.81155
[70] Brower, RC; Nastase, H.; Schnitzer, HJ; Tan, C-I, Analyticity for multi-Regge limits of the Bern-Dixon-Smirnov amplitudes, Nucl. Phys., B 822, 301, (2009) · Zbl 1196.81190
[71] Duca, V.; Duhr, C.; Glover, EWN, Iterated amplitudes in the high-energy limit, JHEP, 12, 097, (2008) · Zbl 1329.81282
[72] Hatsuda, Y., Wilson loop OPE, analytic continuation and multi-Regge limit, JHEP, 10, 38, (2014)
[73] Basso, B.; Caron-Huot, S.; Sever, A., Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP, 01, 027, (2015)
[74] Drummond, JM; Papathanasiou, G., Hexagon OPE resummation and multi-Regge kinematics, JHEP, 02, 185, (2016)
[75] Bartels, J.; Kotanski, J.; Schomerus, V., Excited hexagon Wilson loops for strongly coupled N = 4 SYM, JHEP, 01, 096, (2011) · Zbl 1214.81290
[76] J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The excited hexagon reloaded, arXiv:1311.1512 [INSPIRE].
[77] Lipatov, LN; Prygarin, A., BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev., D 83, 125001, (2011)
[78] Lipatov, LN; Prygarin, A., Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev., D 83, 045020, (2011)
[79] Lipatov, L.; Prygarin, A.; Schnitzer, HJ, The multi-Regge limit of NMHV amplitudes in N = 4 SYM theory, JHEP, 01, 068, (2013)
[80] Dixon, LJ; Duhr, C.; Pennington, J., Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP, 10, 074, (2012)
[81] Pennington, J., The six-point remainder function to all loop orders in the multi-Regge limit, JHEP, 01, 059, (2013)
[82] Broedel, J.; Sprenger, M., Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, JHEP, 05, 055, (2016) · Zbl 1388.81202
[83] Brown, FCS, Single-valued multiple polylogarithms in one variable, Compt. Rend. Acad. Sci. Paris Ser. I, 338, 527, (2004) · Zbl 1048.11053
[84] Prygarin, A.; Spradlin, M.; Vergu, C.; Volovich, A., All two-loop MHV amplitudes in multi-Regge kinematics from applied symbology, Phys. Rev., D 85, 085019, (2012)
[85] Bartels, J.; Kormilitzin, A.; Lipatov, LN; Prygarin, A., BFKL approach and 2 → 5 maximally helicity violating amplitude in N = 4 super-Yang-Mills theory, Phys. Rev., D 86, 065026, (2012)
[86] Bargheer, T.; Papathanasiou, G.; Schomerus, V., The two-loop symbol of all multi-Regge regions, JHEP, 05, 012, (2016)
[87] Bartels, J.; Schomerus, V.; Sprenger, M., Multi-Regge limit of the n-gluon bubble ansatz, JHEP, 11, 145, (2012)
[88] Bartels, J.; Schomerus, V.; Sprenger, M., Heptagon amplitude in the multi-Regge regime, JHEP, 10, 067, (2014) · Zbl 1392.81217
[89] Bartels, J.; Schomerus, V.; Sprenger, M., The Bethe roots of Regge cuts in strongly coupled N = 4 SYM theory, JHEP, 07, 098, (2015) · Zbl 1388.81907
[90] Duca, V.; Dixon, LJ; Duhr, C.; Pennington, J., The BFKL equation, Mueller-navelet jets and single-valued harmonic polylogarithms, JHEP, 02, 086, (2014) · Zbl 1333.81418
[91] Fadin, VS; Lipatov, LN, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N = 4 SUSY, Phys. Lett., B 706, 470, (2012)
[92] V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev.D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].
[93] Bartels, J.; Kormilitzin, A.; Lipatov, L., Analytic structure of the n = 7 scattering amplitude in N = 4 SYM theory in the multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev., D 89, 065002, (2014)
[94] Bartels, J.; Kormilitzin, A.; Lipatov, LN, Analytic structure of the n = 7 scattering amplitude in N = 4 theory in multi-Regge kinematics: conformal Regge cut contribution, Phys. Rev., D 91, 045005, (2015)
[95] L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys.23 (1976) 338 [Yad. Fiz.23 (1976) 642] [INSPIRE].
[96] V.S. Fadin, R. Fiore, M.G. Kozlov and A.V. Reznichenko, Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, Phys. Lett.B 639 (2006) 74 [hep-ph/0602006] [INSPIRE].
[97] Caron-Huot, S., When does the gluon reggeize?, JHEP, 05, 093, (2015)
[98] Parker, D.; Scherlis, A.; Spradlin, M.; Volovich, A., Hedgehog bases for A_{n} cluster polylogarithms and an application to six-point amplitudes, JHEP, 11, 136, (2015) · Zbl 1388.81186
[99] F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/ brown/RHpaper5.pdf.
[100] Brown, F., Single-valued motivic periods and multiple zeta values, SIGMA, 2, e25, (2014) · Zbl 1377.11099
[101] F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410. · Zbl 1390.14024
[102] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[103] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE]. · Zbl 0939.65032
[104] S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE]. · Zbl 1060.33007
[105] S. Weinzierl, Symbolic expansion of transcendental functions, Comput. Phys. Commun.145 (2002) 357 [math-ph/0201011] [INSPIRE]. · Zbl 1001.65025
[106] S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun.174 (2006) 759 [math-ph/0508008] [INSPIRE]. · Zbl 1196.68332
[107] Schnetz, O., Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys., 08, 589, (2014) · Zbl 1320.81075
[108] F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].
[109] Caron-Huot, S.; He, S., Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP, 07, 174, (2012)
[110] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys., B 828, 317, (2010) · Zbl 1203.81112
[111] Nandan, D.; Paulos, MF; Spradlin, M.; Volovich, A., Star integrals, convolutions and simplices, JHEP, 05, 105, (2013) · Zbl 1342.83412
[112] Papathanasiou, G., Hexagon Wilson loop OPE and harmonic polylogarithms, JHEP, 11, 150, (2013) · Zbl 1342.81610
[113] T. Bargheer, Systematics of the multi-Regge three-loop symbol, arXiv:1606.07640 [INSPIRE]. · Zbl 1383.81276
[114] J. Broedel, M. Sprenger and A.T. Orjuela, Towards single-valued polylogarithms in two variables for the seven-point remainder function in multi-Regge-kinematics, arXiv:1606.08411 [INSPIRE]. · Zbl 1354.81036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.