×

zbMATH — the first resource for mathematics

Radial expansion for spinning conformal blocks. (English) Zbl 1390.81501
Summary: This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Software:
SDPB
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ferrara, S.; Grillo, AF; Gatto, R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys., 76, 161, (1973)
[2] Polyakov, AM, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz., 66, 23, (1974)
[3] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324
[4] Rychkov, VS; Vichi, A., Universal constraints on conformal operator dimensions, Phys. Rev., D 80, 045006, (2009)
[5] Poland, D.; Simmons-Duffin, D., Bounds on 4D conformal and superconformal field theories, JHEP, 05, 017, (2011) · Zbl 1296.81067
[6] Rattazzi, R.; Rychkov, S.; Vichi, A., Central charge bounds in 4D conformal field theory, Phys. Rev., D 83, 046011, (2011) · Zbl 1206.81116
[7] Rattazzi, R.; Rychkov, S.; Vichi, A., Bounds in 4D conformal field theories with global symmetry, J. Phys., A 44, 035402, (2011) · Zbl 1206.81116
[8] Poland, D.; Simmons-Duffin, D.; Vichi, A., Carving out the space of 4D cfts, JHEP, 05, 110, (2012)
[9] El-Showk, S.; etal., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev., D 86, 025022, (2012)
[10] Liendo, P.; Rastelli, L.; Rees, BC, The bootstrap program for boundary CFT_{d}, JHEP, 07, 113, (2013) · Zbl 1342.81504
[11] Beem, C.; Rastelli, L.; Rees, BC, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett., 111, 071601, (2013)
[12] Gliozzi, F., More constraining conformal bootstrap, Phys. Rev. Lett., 111, 161602, (2013)
[13] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping the O(N) vector models, JHEP, 06, 091, (2014) · Zbl 1392.81202
[14] El-Showk, S.; Paulos, M.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A., Conformal field theories in fractional dimensions, Phys. Rev. Lett., 112, 141601, (2014) · Zbl 1310.82013
[15] S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[16] Nakayama, Y.; Ohtsuki, T., Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev., D 89, 126009, (2014)
[17] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP, 09, 143, (2014)
[18] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping mixed correlators in the 3D Ising model, JHEP, 11, 109, (2014)
[19] M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
[20] Beem, C.; Lemos, M.; Liendo, P.; Rastelli, L.; Rees, BC, The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP, 03, 183, (2016) · Zbl 1388.81482
[21] Simmons-Duffin, D., A semidefinite program solver for the conformal bootstrap, JHEP, 06, 174, (2015)
[22] Gliozzi, F.; Liendo, P.; Meineri, M.; Rago, A., Boundary and interface CFTs from the conformal bootstrap, JHEP, 05, 036, (2015) · Zbl 1388.81150
[23] Bobev, N.; El-Showk, S.; Mazac, D.; Paulos, MF, Bootstrapping SCFTs with four supercharges, JHEP, 08, 142, (2015) · Zbl 1388.81638
[24] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., bootstrapping the O(\(N\)) archipelago, JHEP, 11, 106, (2015) · Zbl 1388.81054
[25] Beem, C.; Lemos, M.; Rastelli, L.; Rees, BC, The (2, 0) superconformal bootstrap, Phys. Rev., D 93, 025016, (2016)
[26] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., Bootstrapping 3D fermions, JHEP, 03, 120, (2016)
[27] Lemos, M.; Liendo, P., Bootstrapping \( \mathcal{N}=2 \) chiral correlators, JHEP, 01, 025, (2016) · Zbl 1388.81056
[28] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \(N\) = 4 superconformal bootstrap of the K3 CFT, arXiv:1511.04065 [INSPIRE].
[29] S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(\(N\)) vector models with four supercharges in 3 ≤ \(d\) ≤ 4, arXiv:1511.07552 [INSPIRE].
[30] Li, D.; Meltzer, D.; Poland, D., Conformal collider physics from the lightcone bootstrap, JHEP, 02, 143, (2016)
[31] S.M. Chester and S.S. Pufu, Towards bootstrapping QED_{3}, arXiv:1601.03476 [INSPIRE]. · Zbl 1390.81498
[32] C. Behan, PyCFTBoot: a flexible interface for the conformal bootstrap, arXiv:1602.02810 [INSPIRE].
[33] Hofman, DM; Li, D.; Meltzer, D.; Poland, D.; Rejon-Barrera, F., A proof of the conformal collider bounds, JHEP, 06, 111, (2016) · Zbl 1388.81048
[34] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(\(N\)) models, arXiv:1603.04436 [INSPIRE]. · Zbl 1390.81227
[35] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., Fermion-scalar conformal blocks, JHEP, 04, 074, (2016) · Zbl 1388.81051
[36] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed conformal blocks in 4D CFT, arXiv:1601.05325 [INSPIRE].
[37] Osborn, H., Conformal blocks for arbitrary spins in two dimensions, Phys. Lett., B 718, 169, (2012)
[38] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal blocks, JHEP, 11, 154, (2011) · Zbl 1306.81148
[39] Castedo Echeverri, A.; Elkhidir, E.; Karateev, D.; Serone, M., Deconstructing conformal blocks in 4D CFT, JHEP, 08, 101, (2015) · Zbl 1388.81409
[40] Costa, MS; Hansen, T., Conformal correlators of mixed-symmetry tensors, JHEP, 02, 151, (2015) · Zbl 1388.53102
[41] Rejon-Barrera, F.; Robbins, D., Scalar-vector bootstrap, JHEP, 01, 139, (2016) · Zbl 1388.81693
[42] Hogervorst, M.; Rychkov, S., Radial coordinates for conformal blocks, Phys. Rev., D 87, 106004, (2013)
[43] Zamolodchikov, AB, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys., 96, 419, (1984)
[44] J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, arXiv:1509.00428 [INSPIRE]. · Zbl 1390.81533
[45] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal correlators, JHEP, 11, 071, (2011) · Zbl 1306.81207
[46] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, arXiv:1603.05551 [INSPIRE]. · Zbl 1388.81798
[47] Dymarsky, A., On the four-point function of the stress-energy tensors in a CFT, JHEP, 10, 075, (2015) · Zbl 1388.81408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.