×

Many-body chaos at weak coupling. (English) Zbl 1390.81471

Summary: The strength of chaos in large \(N\) quantum systems can be quantified using \(\lambda_{L}\), the rate of growth of certain out-of-time-order four point functions. We calculate \(\lambda_{L}\) to leading order in a weakly coupled matrix \(\Phi^{4}\) theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Larkin, AI; Ovchinnikov, YN, Quasiclassical method in the theory of superconductivity, JETP, 28, 1200, (1969)
[2] Almheiri, A.; Marolf, D.; Polchinski, J.; Stanford, D.; Sully, J., An apologia for firewalls, JHEP, 09, 018, (2013) · doi:10.1007/JHEP09(2013)018
[3] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[4] Shenker, SH; Stanford, D., Multiple shocks, JHEP, 12, 046, (2014) · Zbl 1390.83222 · doi:10.1007/JHEP12(2014)046
[5] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051, (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[6] A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at Fundamental Physics Prize Symposium, 10 November 2014.
[7] A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, Stanford SITP seminars, November 11 and December 18 2014.
[8] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132, (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[9] Roberts, DA; Stanford, D., Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett., 115, 131603, (2015) · doi:10.1103/PhysRevLett.115.131603
[10] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[11] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP45 (1977) 199 [Zh. Eksp. Teor. Fiz.72 (1977) 377] [INSPIRE].
[12] Balitsky, II; Lipatov, LN, The pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys., 28, 822, (1978)
[13] S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory, Phys. Rev.D 52 (1995) 3591 [hep-ph/9409250] [INSPIRE].
[14] Forshaw, JR; Ross, DA, Quantum chromodynamics and the pomeron, Cambridge Lect. Notes Phys., 9, 1, (1997)
[15] A. Kitaev, A simple model of quantum holography, talks given at KITP program “Entanglement in Strongly-Correlated Quantum Matter”, April 7 and May 27 2015.
[16] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[17] Parcollet, O.; Georges, A., Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev., B 59, 5341, (1999) · doi:10.1103/PhysRevB.59.5341
[18] Sachdev, S., Bekenstein-Hawking entropy and strange metals, Phys. Rev., X 5, 041025, (2015) · doi:10.1103/PhysRevX.5.041025
[19] R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev.D 45 (1992) 4695 [Erratum ibid.D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].
[20] Sekino, Y.; Susskind, L., Fast scramblers, JHEP, 10, 065, (2008) · doi:10.1088/1126-6708/2008/10/065
[21] R. Omnès, On locality, growth and transport of entanglement, arXiv:1212.0331.
[22] Kim, H.; Huse, DA, Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett., 111, 127205, (2013) · doi:10.1103/PhysRevLett.111.127205
[23] Gur-Ari, G.; Hanada, M.; Shenker, SH, Chaos in classical D0-brane mechanics, JHEP, 02, 091, (2016) · doi:10.1007/JHEP02(2016)091
[24] A.H. Mueller and D.T. Son, On the Equivalence between the Boltzmann equation and classical field theory at large occupation numbers, Phys. Lett.B 582 (2004) 279 [hep-ph/0212198] [INSPIRE].
[25] S. Jeon, The Boltzmann equation in classical and quantum field theory, Phys. Rev.C 72 (2005) 014907 [hep-ph/0412121] [INSPIRE].
[26] Mathieu, V.; Mueller, AH; Triantafyllopoulos, DN, The Boltzmann equation in classical Yang-Mills theory, Eur. Phys. J., C 74, 2873, (2014) · doi:10.1140/epjc/s10052-014-2873-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.