×

zbMATH — the first resource for mathematics

Tools for CICYs in F-theory. (English) Zbl 1390.81404
Summary: We provide a set of tools for analyzing the geometry of elliptically fibered Calabi-Yau manifolds, starting with a description of the total space rather than with a Weierstrass model or a specified type of fiber/base. Such an approach to the subject of F-theory compactification makes certain geometric properties, which are usually hidden, manifest. Specifically, we review how to isolate genus-one fibrations in such geometries and then describe how to find their sections explicitly. This includes a full parameterization of the Mordell-Weil group where non-trivial. We then describe how to analyze the associated Weierstrass models, Jacobians and resolved geometries. We illustrate our discussion with concrete examples which are complete intersections in products of projective spaces (CICYs). The examples presented include cases exhibiting non-abelian symmetries and higher rank Mordell-Weil group. We also make some comments on non-flat fibrations in this context. In a companion paper to this one [the first author et al., ibid. 2016, No. 10, Paper No. 105, 64 p. (2016; Zbl 1390.81403)], these results will be used to analyze the consequences for string dualities of the ubiquity of multiple fibrations in known constructions of Calabi-Yau manifolds.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Multiple Fibrations in Calabi-Yau Geometry and String Dualities, arXiv:1608.07555 [INSPIRE]. · Zbl 1390.81403
[2] Braun, V., Toric elliptic fibrations and F-theory compactifications, JHEP, 01, 016, (2013) · Zbl 1342.81405
[3] Morrison, DR; Taylor, W., classifying bases for 6D F-theory models, Central Eur. J. Phys., 10, 1072, (2012) · Zbl 1255.81210
[4] Morrison, DR; Taylor, W., toric bases for 6D F-theory models, Fortsch. Phys., 60, 1187, (2012) · Zbl 1255.81210
[5] Taylor, W., On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP, 08, 032, (2012) · Zbl 1397.14048
[6] Martini, G.; Taylor, W., 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP, 06, 061, (2015) · Zbl 1388.83862
[7] Anderson, LB; Taylor, W., Geometric constraints in dual F-theory and heterotic string compactifications, JHEP, 08, 025, (2014)
[8] Johnson, SB; Taylor, W., Calabi-Yau threefolds with large h\^{2,1}, JHEP, 10, 23, (2014) · Zbl 1333.81384
[9] W. Taylor and Y.-N. Wang, Non-toric Bases for Elliptic Calabi-Yau Threefolds and 6D F-theory Vacua, arXiv:1504.07689 [INSPIRE]. · Zbl 1386.14150
[10] Halverson, J.; Taylor, W., \( {\text{\mathbb{P}}}^1 \)-bundle bases and the prevalence of non-higgsable structure in 4D F-theory models, JHEP, 09, 086, (2015) · Zbl 1388.81722
[11] Taylor, W.; Wang, Y-N, A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua, JHEP, 01, 137, (2016) · Zbl 1388.81013
[12] S.B. Johnson and W. Taylor, Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds, arXiv:1605.08052 [INSPIRE]. · Zbl 1349.81157
[13] S.T. Yau, Compact Three-dimensional Kahler Manifolds With Zero Ricci Curvature, in Proceedings of Anomalies, Geometry, Topology. Argonne/Chicago 1985 conference, Chicago U.S.A. (1985), pg. 395. · Zbl 0643.53050
[14] Hubsch, T., Calabi-Yau manifolds: motivations and constructions, Commun. Math. Phys., 108, 291, (1987) · Zbl 0602.53061
[15] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[16] P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau Manifolds. 2. Three generation manifolds, Nucl. Phys.B 306 (1988) 113 [INSPIRE].
[17] Green, P.; Hubsch, T., Calabi-Yau manifolds as complete intersections in products of complex projective spaces, Commun. Math. Phys., 109, 99, (1987) · Zbl 0611.53055
[18] Gray, J.; Haupt, AS; Lukas, A., All complete intersection Calabi-Yau four-folds, JHEP, 07, 070, (2013) · Zbl 1342.14086
[19] Gray, J.; Haupt, AS; Lukas, A., Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds, JHEP, 09, 093, (2014)
[20] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[21] M. Kreuzer and H. Skarke, PALP: A Package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math/0204356] [INSPIRE]. · Zbl 1196.14007
[22] F. Rohsiepe, Fibration structures in toric Calabi-Yau fourfolds, hep-th/0502138 [INSPIRE].
[23] Altman, R.; Gray, J.; He, Y-H; Jejjala, V.; Nelson, BD, A Calabi-Yau database: threefolds constructed from the kreuzer-skarke List, JHEP, 02, 158, (2015) · Zbl 1388.53071
[24] Kreuzer, M.; Skarke, H., Calabi-Yau four folds and toric fibrations, J. Geom. Phys., 26, 272, (1998) · Zbl 0956.14030
[25] Anderson, LB; Apruzzi, F.; Gao, X.; Gray, J.; Lee, S-J, A new construction of Calabi-Yau manifolds: generalized cicys, Nucl. Phys., B 906, 441, (2016) · Zbl 1334.14023
[26] Anderson, LB; Apruzzi, F.; Gao, X.; Gray, J.; Lee, S-J, Instanton superpotentials, Calabi-Yau geometry and fibrations, Phys. Rev., D 93, 086001, (2016)
[27] P. Berglund and T. Hubsch, On Calabi-Yau generalized complete intersections from Hirzebruch varieties and novel K3-fibrations, arXiv:1606.07420 [INSPIRE].
[28] P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, in Lecture Notes in Mathematics. Vol. 476: Modular functions of one variable, IV, Springer, Berlin Germany (1975), pg. 53. · Zbl 1214.11075
[29] N. Nakayama, On Weierstrass Models, in Algebraic Geometry and Commutative Algebra. Vol. II, Kinokuniya, Tokyo Japan (1987), pg. 405.
[30] Braun, V.; Grimm, TW; Keitel, J., Complete intersection fibers in F-theory, JHEP, 03, 125, (2015) · Zbl 1388.81294
[31] Artin, M.; Rodriguez-Villegas, F.; Tate, J., On the Jacobians of plane cubics, Adv. Math., 198, 366, (2005) · Zbl 1092.14054
[32] L.B. Anderson, X. Gao, J. Gray and S.J. Lee, A Catalogue of Fibration Structures in CICY threefolds and fourfolds, to appear.
[33] Birklar, C.; Cascini, P.; Hacon, CD; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 405, (2010) · Zbl 1210.14019
[34] Kodaira, K., On compact analytic surfaces. II, Ann. Math., 77, 563, (1963) · Zbl 0118.15802
[35] Kodaira, K., On compact analytic surfaces. III, Ann. Math., 78, 1, (1963) · Zbl 0171.19601
[36] J. Tate, Algorithm for Determining the Type of a Singular Fiber in an Elliptic Pencil, in Lecture Notes in Mathematics. Vol. 476: Modular functions of one variable, IV, Springer, Berlin Germany (1975), pg. 33. · Zbl 1214.14020
[37] Esole, M.; Yau, S-T, small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys., 17, 1195, (2013) · Zbl 1447.81171
[38] Hayashi, H.; Lawrie, C.; Morrison, DR; Schäfer-Nameki, S., Box graphs and singular fibers, JHEP, 05, 048, (2014) · Zbl 1333.81369
[39] Esole, M.; Shao, S-H; Yau, S-T, Singularities and gauge theory phases, Adv. Theor. Math. Phys., 19, 1183, (2015) · Zbl 1428.81123
[40] M. Esole, S.-H. Shao and S.-T. Yau, Singularities and Gauge Theory Phases II, arXiv:1407.1867 [INSPIRE]. · Zbl 1428.81124
[41] Braun, AP; Schäfer-Nameki, S., Box graphs and resolutions I, Nucl. Phys., B 905, 447, (2016) · Zbl 1332.81127
[42] M. Esole, S.G. Jackson, R. Jagadeesan and A.G. Noël, Incidence Geometry in a Weyl Chamber I: GL_{\(n\)}, arXiv:1508.03038 [INSPIRE].
[43] Braun, AP; Schäfer-Nameki, S., Box graphs and resolutions II: from Coulomb phases to fiber faces, Nucl. Phys., B 905, 480, (2016) · Zbl 1332.81128
[44] M. Esole, S.G. Jackson, R. Jagadeesan and A.G. Noël, Incidence Geometry in a Weyl Chamber II: SL_{\(n\)}, arXiv:1601.05070 [INSPIRE].
[45] R. Wazir, Arithmetic on elliptic threefolds, Compos. Math.140 (2004) 567 [math/0112259]. · Zbl 1060.11039
[46] L.B. Anderson, J. Gray, Y.-H. He, S.-J. Lee and A. Lukas, CICY package.
[47] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and A new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[48] He, Y-H; Lee, S-J; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP, 05, 071, (2010) · Zbl 1287.81094
[49] L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP07 (2008) 104 arXiv:0805.2875 [INSPIRE].
[50] Gray, J.; He, Y-H; Ilderton, A.; Lukas, A., A new method for finding vacua in string phenomenology, JHEP, 07, 023, (2007)
[51] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
[52] J. Kollar, Deformations of elliptic Calabi-Yau manifolds, arXiv:1206.5721 [INSPIRE]. · Zbl 1326.14081
[53] Oguiso, K., On algebraic fiber space structures on a Calabi-Yau 3-fold, Int. J. Math., 3, 439, (1993) · Zbl 0793.14030
[54] Wilson, PMH, The existence of elliptic fibre space structures on Calabi-Yau threefolds, Math. Ann., 300, 693, (1994) · Zbl 0819.14015
[55] T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists, World Scientific, Singapore (1992). · Zbl 0771.53002
[56] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[57] Braun, V.; Morrison, DR, F-theory on genus-one fibrations, JHEP, 08, 132, (2014) · Zbl 1333.81200
[58] D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE]. · Zbl 1348.83091
[59] Anderson, LB; García-Etxebarria, I.; Grimm, TW; Keitel, J., Physics of F-theory compactifications without section, JHEP, 12, 156, (2014) · Zbl 1333.81299
[60] Klevers, D.; Mayorga Pena, DK; Oehlmann, P-K; Piragua, H.; Reuter, J., F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP, 01, 142, (2015) · Zbl 1388.81563
[61] García-Etxebarria, I.; Grimm, TW; Keitel, J., Yukawas and discrete symmetries in F-theory compactifications without section, JHEP, 11, 125, (2014) · Zbl 1333.81332
[62] Mayrhofer, C.; Palti, E.; Till, O.; Weigand, T., Discrete gauge symmetries by higgsing in four-dimensional F-theory compactifications, JHEP, 12, 068, (2014)
[63] Cvetič, M.; Donagi, R.; Klevers, D.; Piragua, H.; Poretschkin, M., F-theory vacua with\( {\mathbb{Z}}_3 \)gauge symmetry, Nucl. Phys., B 898, 736, (2015) · Zbl 1329.81309
[64] Grimm, TW; Pugh, TG; Regalado, D., Non-abelian discrete gauge symmetries in F-theory, JHEP, 02, 066, (2016) · Zbl 1388.81322
[65] Martucci, L.; Weigand, T., Non-perturbative selection rules in F-theory, JHEP, 09, 198, (2015) · Zbl 1388.81349
[66] Lin, L.; Mayrhofer, C.; Till, O.; Weigand, T., Fluxes in F-theory compactifications on genus-one fibrations, JHEP, 01, 098, (2016) · Zbl 1388.81185
[67] Grimm, TW; Kapfer, A.; Klevers, D., The arithmetic of elliptic fibrations in gauge theories on a circle, JHEP, 06, 112, (2016) · Zbl 1388.81321
[68] Kimura, Y., Gauge groups and matter fields on some models of F-theory without section, JHEP, 03, 042, (2016)
[69] P.-K. Oehlmann, J. Reuter and T. Schimannek, Mordell-Weil Torsion in the Mirror of Multi-Sections, arXiv:1604.00011 [INSPIRE]. · Zbl 1390.81460
[70] M. Cvetič, A. Grassi and M. Poretschkin, Discrete Symmetries in Heterotic/F-theory Duality and Mirror Symmetry, arXiv:1607.03176 [INSPIRE]. · Zbl 1380.83252
[71] Park, DS, Anomaly equations and intersection theory, JHEP, 01, 093, (2012) · Zbl 1306.81268
[72] Morrison, DR; Park, DS, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP, 10, 128, (2012) · Zbl 1397.81389
[73] Witten, E., Nonperturbative superpotentials in string theory, Nucl. Phys., B 474, 343, (1996) · Zbl 0925.32012
[74] Ovrut, BA; Pantev, T.; Park, J., Small instanton transitions in heterotic M-theory, JHEP, 05, 045, (2000) · Zbl 0990.81627
[75] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, New York U.S.A. (1977). · Zbl 0367.14001
[76] P. Grifiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York U.S.A. (1978).
[77] J.H. Silverman, Graduate Texts in Mathematics. Vol. 106: The Arithmetic of Elliptic Curves, Springer-Verlag, New York U.S.A. (2009). · Zbl 1194.11005
[78] The data for CICYs and their symmetries can be found at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/index.html.
[79] Braun, V.; Grimm, TW; Keitel, J., geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP, 12, 069, (2013)
[80] Vafa, C., Evidence for F-theory, Nucl. Phys., B 469, 403, (1996) · Zbl 1003.81531
[81] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys.B 473 (1996) 74 [hep-th/9602114] [INSPIRE]. · Zbl 0925.14007
[82] Seiberg, N.; Witten, E., Comments on string dynamics in six-dimensions, Nucl. Phys., B 471, 121, (1996) · Zbl 1003.81535
[83] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys.B 476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14007
[84] Candelas, P.; Diaconescu, D-E; Florea, B.; Morrison, DR; Rajesh, G., Codimension three bundle singularities in F-theory, JHEP, 06, 014, (2002)
[85] R. Miranda, Smooth models for elliptic threefolds, in Progress in Mathematics. Vol. 29: Birational Geometry of Degenerations, Birkhauser, Boston U.S.A. (1983), pg. 85. · Zbl 0583.14014
[86] Gross, M., A finiteness theorem for elliptic Calabi-Yau threefolds, Duke Math. J., 74, 271, (1994) · Zbl 0838.14033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.