×

Computation of fast depressurization of water using a two-fluid model: revisiting bilicki modelling of mass transfer. (English) Zbl 1390.76871

Summary: This paper is devoted to the computation of the fast depressurization of water using a two-fluid model. Such application, which is extensively studied in the nuclear field, involves many interactions between two phenomena, the mass transfer and the propagation of pressure waves. A simple but physically-based modelling of the mass transfer for the depressurization of water is proposed, which relies on the work of Z. Bilicki and J. Kestin [Proc. R. Soc. Lond., Ser. A 428, No. 1875, 379–397 (1990; Zbl 0701.76108)] in the homogeneous frame. Four different experiments have been chosen to assess the proposed model. Three of them study the depressurization of hot water in a pressurized pipe. The comparison between converged numerical results and the experimental data shows a good agreement and demonstrates the ability of the two-fluid-model to capture the proper mass transfer for a wide range of thermodynamical conditions. The last test-case is the HDR experiment which considers the depressurization of a full-scale vessel under the hypothesis of a loss of coolant accident. The results of an ALE computation show the ability of the proposed model to retrieve experimental data in both structure and fluid.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76Nxx Compressible fluids and gas dynamics

Citations:

Zbl 0701.76108

Software:

NEPTUNE; RELAP5
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Bilicki, Z.; Kestin, J., Physical aspects of the relaxation model in two-phase flow, Proc R Soc London A, 428, 1875, 379-397, (1990) · Zbl 0701.76108
[2] Ransom, V. H.; Hicks, D. L., Hyp erbolic two-pressure models for two-phase flow, J Comput Phys, 53, 1, 124-151, (1984) · Zbl 0537.76070
[3] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int J Multiphase Flow, 12, 6, 861-889, (1986) · Zbl 0609.76114
[4] Kapila, A. K.; Son, S. F.; Bdzil, J. B.; Menikoff, R.; Stewart, D. S., Two-phase modeling of DDT: structure of the velocity-relaxation zone, Physics of Fluids, 9, 12, 3885-3897, (1997)
[5] Glimm, J.; Saltz, D.; Sharp, D. H., Two-phase modelling of a fluid mixing layer, J Fluid Mech, 378, 119-143, (1999)
[6] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J Comput Phys, 150, 2, 425-467, (1999) · Zbl 0937.76053
[7] Gavrilyuk, S.; Saurel, R., Ma thematical and numerical modeling of two-phase compressible flows with micro-inertia, J Comput Phys, 175, 1, 326-360, (2002) · Zbl 1039.76067
[8] Gallouët, T.; Hérard, J.-M.; Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math Models Methods Appl Sci, 14, 05, 663-700, (2004) · Zbl 1177.76428
[9] Ishii, M., Thermo-fluid dynamic theory of two-phase flows, Collection de la Direction des Etudes et Recherches d’Electricité de France, (1975) · Zbl 0325.76135
[10] Drew, D. A.; Passman, S. L., Theory of multicomponent fluids, (1999), Springer Verlag
[11] Lochon, H.; Daude, F.; Galon, P.; Hérard, J.-M., Comparison of two-fluid models on steam-water transients, ESAIM: Mathematical Modelling and Numerical Analysis, (2016) · Zbl 1373.76136
[12] Hérard, J.-M.; Hurisse, O., A fractional step method to compute a class of compressible gas-liquid flows, Comput Fluids, 55, 57-69, (2012) · Zbl 1291.76217
[13] Crouzet, F.; Daude, F.; Galon, P.; Hérard, J.-M.; Hurisse, O.; Liu, Y., Va lidation of a two-fluid model on unsteady liquid-vapor water flows, Comput Fluids, 119, 131-142, (2015) · Zbl 1390.76417
[14] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J Fluid Mech, 607, 313-350, (2008) · Zbl 1147.76060
[15] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, J Comput Phys, 229, 8, 2964-2998, (2010) · Zbl 1307.76079
[16] Le Métayer, O. L.; Massoni, J.; Saurel, R., Dynamic relaxation processes in compressible multiphase flows. application to evaporation phenomena, ESAIM: Proceedings, 40, 103-123, (2013) · Zbl 1330.76133
[17] Pelanti, M.; Shyue, K.-M., A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J Comput Phys, 259, 331-357, (2014) · Zbl 1349.76851
[18] Daude, F.; Galon, P.; Gao, Z.; Blaud, E., Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition, Comput Fluids, 94, 112-138, (2014) · Zbl 1391.76397
[19] Rodio, M. G.; Abgrall, R., An innovative phase transition modeling fro reproducing cavitation through fiveequation model and theoretical generalization to six and seven-equation models, Int J Heat Mass Transf, 89, 1396-1401, (2015)
[20] Brown, S.; Martynov, S.; Mahgerefteh, H.; Chen, S.; Zhang, Y., Modelling the non-equilibrium two-phase flow during depressurisation of CO_{2} pipelines, Int J Greenhouse Gas Control, 30, 9-18, (2014)
[21] Bilicki, Z.; Kwidziński, R.; Mohammadein, S. A., Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow, Int J Heat Mass Transf, 39, 4, 753-759, (1996) · Zbl 0963.76592
[22] Downar-Zapolski, P.; Bilicki, Z.; Bolle, L.; Franco, J., The non-equilibrium relaxation model for one-dimensional flashing liquid flow, Int J Multiphase Flow, 22, 3, 473-483, (1996) · Zbl 1135.76405
[23] Faucher, E.; Hérard, J.-M.; Barret, M.; Toulemonde, C., Computation of flashing flows in variable cross-section ducts, Int J Comut Fluid Dyn, 13, 4, 365-391, (2000) · Zbl 0976.76047
[24] Schmidt, D.; Gopalakrishnan, S.; Jasak, H., Multi-dimensional simulation of thermal non-equilibrium channel flow, Int J Multiphase Flow, 36, 284-292, (2010)
[25] Gale, J.; Tiselj, I.; Horvat, A., Two-fluid model of the WAHA code for simulations of water hammer transients, Multiphase Sci Technol, 20, 3-4, 291-322, (2008)
[26] Jin, H.; Glimm, J.; Sharp, D. H., Entropy of averaging for compressible two-pressure two-phase flow models, Phys Lett A, 360, 1, 114-121, (2006) · Zbl 1236.76081
[27] Müller, S.; Hantke, M.; Richter, P., Closure conditions for non-equilibrium multi-component models, Continuum Mech Thermodyn, 1-33, (2015)
[28] Coquel, F.; Gallouët, T.; Hérard, J.-M.; Seguin, N., Closure laws for a two-fluid two-pressure model, CR Math, 334, 10, 927-932, (2002) · Zbl 0999.35057
[29] Glimm, J.; Saltz, D.; Sharp, D. H., Renormalization group solution of two-phase flow equations for Rayleigh-Taylor mixing, Phys Lett A, 222, 3, 171-176, (1996) · Zbl 0972.76512
[30] Embid, P.; Baer, M., Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech Thermodyn, 4, 4, 279-312, (1992) · Zbl 0760.76096
[31] Guillemaud, V., Modélisati on et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions, (2007), Université de Provence - Aix-Marseille I, Ph.d. thesis
[32] Gavrilyuk S. The structure of pressure relaxation terms : one-velocity case. 2014. Internal report H-I83-2014-00276-EN, EDF R&D.; Gavrilyuk S. The structure of pressure relaxation terms : one-velocity case. 2014. Internal report H-I83-2014-00276-EN, EDF R&D.
[33] Lavieville J, Boucker M, Quemerais E, Mimouni S, Mechitoua N. NEPTUNE_CFD V1.0 - Theory Manual. 2006. Internal report H-I81-2006-04377-EN, EDF R&D.; Lavieville J, Boucker M, Quemerais E, Mimouni S, Mechitoua N. NEPTUNE_CFD V1.0 - Theory Manual. 2006. Internal report H-I81-2006-04377-EN, EDF R&D.
[34] RELAP5-3D Code Manual Volume IV: Models and Correlations. Technical Report ineel-ext-98-00834; Idaho National Laboratory (INL), 2012. http://www4vip.inl.gov/relap5/r5manuals/ver_4_0/vol-4.pdf; RELAP5-3D Code Manual Volume IV: Models and Correlations. Technical Report ineel-ext-98-00834; Idaho National Laboratory (INL), 2012. http://www4vip.inl.gov/relap5/r5manuals/ver_4_0/vol-4.pdf
[35] Reocreux, M., Contribution à l’étude des débits critiques en écoulement diphasique eau-vapeur, (1974), Ph.d. thesis, Université Scientifique et Médicale de Grenoble
[36] Lochon, H., Modélisation et simulation d’écoulements transitoires eau-vapeur en approche bifluide, (2016), Ph.d. thesis, Université d’Aix-Marseille
[37] Riegel, B., Contribution à l’étude de la décompression d’une capacité en régime diphasique, (1978), Ph.d. thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble
[38] Edwards, A. R.; O’Brien, T. P., Studies of phenomena connected with the depressurization of water reactors, Journal of the British Nuclear Energy Society, 9, 125-135, (1970)
[39] Wolf, L., Experimental results of coupled fluid-structure interactions during blowdown of the HDR-vessel and comparisons with pre-and post-test predictions, Nucl Eng Des, 70, 3, 269-308, (1982)
[40] Lochon, H.; Daude, F.; Galon, P.; Hérard, J.-M., H LLC-type Riemann solver with approximated two-phase contact for the computation of the Baer-Nunziato two-fluid model, J Comput Phys, 326, 733-762, (2016) · Zbl 1373.76136
[41] Europlexus User’s Manual. 2016. Technical Report, Joint Research Centre (JRC), Commissariat à l’énergie atomique et aux énergies alternatives (CEA) http://europlexus.jrc.ec.europa.eu/public/manual_html/index.html; Europlexus User’s Manual. 2016. Technical Report, Joint Research Centre (JRC), Commissariat à l’énergie atomique et aux énergies alternatives (CEA) http://europlexus.jrc.ec.europa.eu/public/manual_html/index.html
[42] Haar, L.; Gallangher, J.; Kell, G., NBS/NRC steam tables: thermodyamic and transport properties and computer programs for vapor and liquid states of water in SI units, (1984), Hemisphere Publishing Co
[43] Daude, F.; Galon, P., On the computation of the Baer-Nunziato model using ALE formulation with HLL- and HLLC-type solvers towards fluid-structure interactions, J Comput Phys, 304, 189-230, (2016) · Zbl 1349.76320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.