×

zbMATH — the first resource for mathematics

Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. (English) Zbl 1390.76764
Summary: Smoothed particle hydrodynamics (SPH) is a relatively new meshless numerical approach which has attracted significant attention in the last two decades. Compared with the conventional mesh-based computational fluid dynamics (CFD) methods, the SPH approach exhibits some unique advantages in modeling multiphysic flows and associated transport phenomena due to its capabilities of handling complex boundary evolution as well as modeling complicated physics in a relatively simple manner. On the other hand, as SPH is still a developing CFD method, it is crucial to identify its advantages and limitations in modeling realistic multiphysic flow problems of real life and of industrial interest. Toward this end, this work aims at summarizing the motivations behind utilizing the SPH method in an industrial context, making the state-of-the-art of the present application of this method to industrial problems, as well as deriving general conclusions regarding its assets and limitations and stressing the remaining challenges in order to make it an hand-on computational tool.

MSC:
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shadloo, M. S.; Le Touzé, D.; Oger, G., Mesh-free Lagrangian modelling of fast flow dynamics, The Twenty-fifth international offshore and polar engineering conference, 21-26 June, Kona, Hawaii, USA, (2015), International Society of Offshore and Polar Engineers
[2] Anderson, D.; McFadden, G.; Wheeler, A., Diffuse-interface methods in fluid mechanics, Annu Rev Fluid Mech, 30, 1, 139-165, (1998)
[3] Cuvelier, C.; Schulkes, R., Some numerical methods for the computation of capillary free boundaries governed by the Navier-Stokes equations, Siam Rev, 355-423, (1990) · Zbl 0706.76027
[4] Floryan, J.; Rasmussen, H., Numerical methods for viscous flows with moving boundaries, Appl Mech Rev, 42, 323, (1989)
[5] Hou, T., Numerical solutions to free boundary problems, Acta Numer, 4, 1, 335-415, (1995) · Zbl 0831.65137
[6] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu Rev Fluid Mech, 31, 1, 567-603, (1999)
[7] Tsai, W.; Yue, D., Computation of nonlinear free-surface flows, Annu Rev Fluid Mech, 28, 1, 249-278, (1996)
[8] Shyy W., Udaykumar H., Rao M., Smith R. Computational fluid dynamics with moving boundaries. series in computational and physical processes in mechanics and thermal sciences. Minkowycz W.J., Sparrow E.M. ed 1996.
[9] Smolianski, A., Numerical modeling of two-fluid interfacial flows, (2001), University of Jyväskylä
[10] Shadloo, M. S., Improved multiphase smoothed particle hydrodynamics, (2013), Sabanci University, Ph.D. thesis
[11] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Physics Reports, 222, 3, 145-197, (1992)
[12] Rothman, D.; Zaleski, S., Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow, Rev Modern Phys, 66, 4, 1417, (1994)
[13] Rothman, D.; Zaleski, S., Lattice-gas cellular automata: simple models of complex hydrodynamics, vol. 5, (2004), Cambridge Univ Pr
[14] Koshizuka, S., A particle method for incompressible viscous flow with fluid fragmentation, Comput Fluid Dyn J, 4, 29-46, (1995)
[15] Monaghan, J. J., Simulating free surface flows with SPH, J Comput Phys, 110, (1994) · Zbl 0794.76073
[16] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astronom J, 82, 1013-1024, (1977)
[17] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics^* 1, J Comput Phys, 191, 2, 448-475, (2003) · Zbl 1028.76039
[18] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved sph method: towards higher order convergence, J Comput Phys, 225, 2, 1472-1492, (2007) · Zbl 1118.76050
[19] Khayyer, A.; Gotoh, H.; Shao, S., Corrected incompressible sph method for accurate water-surface tracking in breaking waves, Coastal Eng, 55, 3, 236-250, (2008)
[20] Khayyer, A.; Gotoh, H.; Shao, S., Enhanced predictions of wave impact pressure by improved incompressible sph methods, Appl Ocean Res, 31, 2, 111-131, (2009)
[21] Marrone, S.; Colagrossi, A.; Antuono, M.; Colicchio, G.; Graziani, G., An accurate sph modeling of viscous flows around bodies at low and moderate Reynolds numbers, J Comput Phys, 245, 456-475, (2013) · Zbl 1349.76715
[22] Avesani, D.; Dumbser, M.; Bellin, A., A new class of moving-least-squares weno-sph schemes, J Comput Phys, 270, 278-299, (2014) · Zbl 1349.76661
[23] Ozbulut, M.; Yildiz, M.; Goren, O., A numerical investigation into the correction algorithms for sph method in modeling violent free surface flows, Int J Mech Sci, 79, 56-65, (2014)
[24] Grenier, N.; Antuono, M.; Colagrossi, A.; Le Touzé, D.; Alessandrini, B., An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, J Comput Phys, 228, 22, 8380-8393, (2009) · Zbl 1333.76056
[25] Zainali, A.; Tofighi, N.; Safdari Shadloo, M.; Yildiz, M., Numerical investigation of newtonian and non-Newtonian multiphase flows using isph method, Comput Meth Appl Mech Eng, 254, 99-113, (2013) · Zbl 1297.76137
[26] Monaghan, J.; Rafiee, A., A simple sph algorithm for multi-fluid flow with high density ratios, Int J Numer Meth Fluids, 71, 5, 537-561, (2013)
[27] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J Comput Phys, 228, 18, 6703-6725, (2009) · Zbl 1261.76047
[28] Shadloo, M. S.; Zainali, A.; Yildiz, M., Bluff-body simulation by sph method with relatively high Reynolds number in laminar flow regime, ASME 2010 3rd joint US-European fluids engineering summer meeting collocated with 8th international conference on nanochannels, microchannels, and minichannels, 213-222, (2010), American Society of Mechanical Engineers
[29] Shadloo, M.; Zainali, A.; Sadek, S.; Yildiz, M., Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies, Comput Methods Appl Mech Eng, 200, 9, 1008-1020, (2011) · Zbl 1225.76242
[30] Lind, S. J.; Xu, R.; Stansby, P.; Rogers, B. D., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J Comput Phys, 231, 4, 1499-1523, (2012) · Zbl 1286.76118
[31] Morris, J. P., Analysis of smoothed particle hydrodynamics with applications, (1996), Monash University Australia
[32] Fan, X.-J.; Tanner, R.; Zheng, R., Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow, J Non-Newtonian Fluid Mech, 165, 5, 219-226, (2010) · Zbl 1274.76022
[33] Monaghan, J. J., SPH without a tensile instability, J Comput Phys, 159, 2, 290-311, (2000) · Zbl 0980.76065
[34] Dyka, C.; Ingel, R., Addressing tension instability in sph methods., Tech. Rep, (1994), DTIC Document
[35] Randles, P.; Libersky, L., Smoothed particle hydrodynamics: some recent improvements and applications, Comput Methods in Appl Mech Eng, 139, 1, 375-408, (1996) · Zbl 0896.73075
[36] Monaghan, J. J., Smoothed particle hydrodynamics, Rep Progress Phys, 68, 1703, (2005) · Zbl 1160.76399
[37] Cleary, P. W.; Prakash, M.; Ha, J.; Stokes, N., Smooth particle hydrodynamics: status and future potential, Progress in Comput Fluid Dyn Int J, 7, 2, 70-90, (2007) · Zbl 1117.76052
[38] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (sph): an overview and recent developments, Archives of Comput Methods Eng, 17, 1, 25-76, (2010) · Zbl 1348.76117
[39] Neuhauser, M.; Marongiu, J.-C., Coupling of a SPH-ALE and a finite volume method - extension to 2D and 3D, 9th international SPHERIC workshop, Paris, France, (2014)
[40] Barcarolo, D.; LeTouz³e, D.; Oger, G.; DeVuyst, F., Voronoi-SPH: on the analysis of a hybrid finite volumes - smoothed particle hydrodynamics method, 9th international SPHERIC workshop, Paris, France, 371-378, (2014)
[41] Potapov, A. V.; Hunt, M. L.; Campbell, C. S., Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method, Powder Technol, 116, 2, 204-213, (2001)
[42] Fernandez, J.; Cleary, P.; Sinnott, M.; Morrison, R., Using sph one-way coupled to dem to model wet industrial banana screens, Minerals Eng, 24, 8, 741-753, (2011)
[43] Landrini, M.; Colagrossi, A.; Greco, M.; Tulin, M., The fluid mechanics of splashing bow waves on ships: A hybrid BEM-sph analysis, Ocean Eng, 53, 111-127, (2012)
[44] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics-theory and application to non-spherical stars, Monthly Notices Royal Astronom Soc, 181, 375-389, (1977) · Zbl 0421.76032
[45] Monaghan, J. J.; Lattanzio, J. C., A refined particle method for astrophysical problems, Astronom Astrophys, 149, 135-143, (1985) · Zbl 0622.76054
[46] Morris, J. P., A study of the stability properties of smooth particle hydrodynamics, pasa, 13, 97-102, (1996)
[47] Fulk, D. A.; Quinn, D. W., An analysis of 1-d smoothed particle hydrodynamics kernels, J Comput Phys, 126, 1, 165-180, (1996) · Zbl 0853.76060
[48] Capuzzo-Dolcetta, R.; Di Lisio, R., A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics, Appl Numer Math, 34, 4, 363-371, (2000) · Zbl 0994.76081
[49] Price, D. J.; Monaghan, J., Smoothed particle magnetohydrodynamics-ii. variational principles and variable smoothing-length terms, Monthly Notices Royal Astronom Soc, 348, 1, 139-152, (2004)
[50] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput Methods Appl Mech Eng, 139, 1-4, 375-408, (1996) · Zbl 0896.73075
[51] Doring, M., Developpement d’une methode sph pour les applications surface libre en hydrodynamique, (2005), Ecole Centrale de Nantes., Ph.D. thesis
[52] Oger, G., Aspects theoriques de la methode sph et applications a l’hydrodynamique a surface libre, (2006), Ecole Centrale de Nantes., Ph.D. thesis
[53] Liu, W.; Jun, S.; Zhang, Y., Reproducing kernel particle methods, Int J Numer Meth Fluids, 20, 8-9, 1081-1106, (1995) · Zbl 0881.76072
[54] Chen, J.; Pan, C.; Wu, C.; Liu, W., Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput Methods Appl Mech Eng, 139, 1, 195-227, (1996) · Zbl 0918.73330
[55] Jun, S.; Liu, W.; Belytschko, T., Explicit reproducing kernel particle methods for large deformation problems, International Journal for Numerical Methods in Engineering, 41, 1, 137-166, (1998) · Zbl 0909.73088
[56] Liu, W.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int J Numer Methods Eng, 38, 10, 1655-1679, (1995) · Zbl 0840.73078
[57] Chen, J.; Beraun, J., A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput Methods Appl Mech Eng, 190, 1, 225-239, (2000) · Zbl 0967.76077
[58] Colagrossi, A.; Bouscasse, B.; Antuono, M.; Marrone, S., Particle packing algorithm for sph schemes, Comput Phys Commun, 183, 8, 1641-1653, (2012) · Zbl 1307.65140
[59] Shadloo, M.; Zainali, A.; Yildiz, M.; Suleman, A., A robust weakly compressible sph method and its comparison with an incompressible sph, Int J Numer Methods Eng, 89, 8, 939-956, (2012) · Zbl 1242.76279
[60] Ben Moussa, B.; Vila, J., Convergence of sph method for scalar nonlinear conservation laws, SIAM J Numer Anal, 37, 3, 863-887, (2000) · Zbl 0949.65095
[61] Bonet, J.; Lok, T. S.L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput Methods Appl Mech Eng, 180, 1-2, 97-115, (1999) · Zbl 0962.76075
[62] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using sph, Journal of Computational Physics, 136, 1, 214-226, (1997) · Zbl 0889.76066
[63] Chorin, A., Numerical solution of the Navier-Stokes equations, Math Comp, 22, 104, 745-762, (1968) · Zbl 0198.50103
[64] Chorin, A., On the convergence of discrete approximations to the Navier-Stokes equations, Math Comp, 23, 341-353, 17, (1969)
[65] Cummins, S. J.; Rudman, M., An SPH projection method, J Comput Phys, 152, 2, 584-607, (1999) · Zbl 0954.76074
[66] Shao, S.; Lo, E. Y.M., Incompressible SPH method for simulating newtonian and non-Newtonian flows with a free surface, Adv Water Resour, 26, 7, 787-800, (2003)
[67] Pozorski, J.; Wawrenczuk, A., SPH computation of incompressible viscous flows, J Theor Appl Mech-Warsaw-, 40, 917-938, (2002)
[68] Hu, X. Y.; Adams, N. A., An incompressible multi-phase SPH method, J Comput Phys, 227, 1, 264-278, (2007) · Zbl 1126.76045
[69] Gray, J.; Monaghan, J.; Swift, R., Sph elastic dynamics, Comput Meth Appl Mech Eng, 190, 49-50, 6641-6662, (2001) · Zbl 1021.74050
[70] Ellero, M.; Kröger, M.; Hess, S., Viscoelastic flows studied by smoothed particle dynamics, J Non-Newtonian Fluid Mech, 105, 1, 35-51, (2002) · Zbl 1021.76043
[71] Fang, J.; Owens, R. G.; Tacher, L.; Parriaux, A., A numerical study of the sph method for simulating transient viscoelastic free surface flows, J Non-Newtonian Fluid Mech, 139, 1, 68-84, (2006) · Zbl 1195.76091
[72] Hosseini, S. M.; Manzari, M. T.; Hannani, S. K., A fully explicit three-step sph algorithm for simulation of non-Newtonian fluid flow, Int J Numer Methods Heat Fluid Flow, 17, 7, 715-735, (2007) · Zbl 1231.76232
[73] Allahdadi, F. A.; Carney, T. C.; Hipp, J. R.; Libersky, L. D.; Petschek, A. G., High strain Lagrangian hydrodynamics: a three dimensional sph code for dynamic material response, Tech. Rep., (1993), DTIC Document · Zbl 0791.76065
[74] Antoci, C.; Gallati, M.; Sibilla, S., Numerical simulation of fluid-structure interaction by sph, Comput Struct, 85, 11, 879-890, (2007)
[75] Bui, H. H.; Fukagawa, R.; Sako, K.; Ohno, S., Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model, Int J Numer Anal Methods in Geomechanics, 32, 12, 1537-1570, (2008) · Zbl 1273.74563
[76] Morris, J. P., Simulating surface tension with smoothed particle hydrodynamics, Int J Numer Methods Fluids, 33, 3, 333-353, (2000) · Zbl 0985.76072
[77] Hu, X. Y.; Adams, N. A., A multi-phase SPH method for macroscopic and mesoscopic flows, J Comput Phys, 213, 2, 844-861, (2006) · Zbl 1136.76419
[78] Shadloo, M.; Rahmat, A.; Yildiz, M., A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid, Comput Mech, 52, 3, 693-707, (2013) · Zbl 1282.76158
[79] Rahmat, A.; Tofighi, N.; Shadloo, M.; Yildiz, M., Numerical simulation of wall bounded and electrically excited Rayleigh-Taylor instability using incompressible smoothed particle hydrodynamics, Colloids and Surfaces A, 460, 60-70, (2014)
[80] Monaghan, J.; Pongracic, H., Artificial viscosity for particle methods, Appl Numer Math, 1, 3, 187-194, (1985) · Zbl 0607.76069
[81] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput Phys Commun, 181, 3, 532-549, (2010) · Zbl 1333.76055
[82] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G., δ-sph model for simulating violent impact flows, Comput Methods Appl Mech Eng, 200, 13, 1526-1542, (2011) · Zbl 1228.76116
[83] Vila, J., On particle weighted methods and smooth particle hydrodynamics, Math Models Methods Appl Sci, 9, 02, 161-209, (1999) · Zbl 0938.76090
[84] Lanson, N.; Vila, J.-P., Renormalized meshfree schemes i: consistency, stability, and hybrid methods for conservation laws, SIAM J Numer Anal, 46, 4, 1912-1934, (2008) · Zbl 1178.65123
[85] Monaghan, J. J.; Kajtar, J. B., Sph particle boundary forces for arbitrary boundaries, Comput Phys Commun, 180, 10, 1811-1820, (2009) · Zbl 1197.76104
[86] Marongiu, J.-C.; Leboeuf, F.; Caro, J.; Parkinson, E., Free surface flows simulations in pelton turbines using an hybrid sph-ale method, J Hydraul Res, 48, S1, 40-49, (2010)
[87] Ferrand, M.; Laurence, D. R.; Rogers, B. D.; Violeau, D.; Kassiotis, C., Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless sph method, Int J Numer Methods Fluids, 71, 4, 446-472, (2013)
[88] Leroy, A.; Violeau, D.; Ferrand, M.; Kassiotis, C., Unified semi-analytical wall boundary conditions applied to 2-d incompressible sph, J Comput Phys, 261, 106-129, (2014) · Zbl 1349.76706
[89] Macià, F.; González, L. M.; Cercos-Pita, J. L.; Souto-Iglesias, A., A boundary integral sph formulation consistency and applications to isph and wcsph, Progress Theor Phys, 128, 3, 439-462, (2012) · Zbl 1426.76608
[90] Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R.; Allahdadi, F. A., High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response, J Comput Phys, 109, 67-75, (1993) · Zbl 0791.76065
[91] Hieber, S. E.; Koumoutsakos, P., An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers, J Comput Phys, 227, 19, 8636-8654, (2008) · Zbl 1227.76052
[92] Takeda, H.; Miyama, S. M.; Sekiya, M., Numerical simulation of viscous flow by smoothed particle hydrodynamics, Progress Theor Phys, 92, 5, 939-960, (1994)
[93] Di Monaco, A.; Manenti, S.; Gallati, M.; Sibilla, S.; Agate, G.; Guandalini, R., Sph modeling of solid boundaries through a semi-analytic approach, Eng Appl Comput Fluid Mech, 5, 1, 1-15, (2011)
[94] Colagrossi, A.; Antuono, M.; Le Touzé, D., Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model, Phys Rev E, 79, 5, 056701, (2009)
[95] Hernquist, L.; Katz, N., Treesph: a unification of SPH with the hierarchical tree method, Astrophys J Supplement Series, 70, 419-446, (1989)
[96] Monaghan, J. J., Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 543-574, (1992)
[97] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., Two-dimensional sph simulations of wedge water entries, J Comput Phys, 213, 2, 803-822, (2006) · Zbl 1088.76056
[98] Barcarolo, D.; Le Touzé, D.; Oger, G.; de Vuyst, F., Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method, J Comput Phys, 273, 0, 640-657, (2014) · Zbl 1351.76229
[99] Feldman, J.; Bonet, J., Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems, Int J Numer Methods Eng, 72, 3, 295-324, (2007) · Zbl 1194.76229
[100] Huang, Y. J.; Nydal, O. J.; Yao, B.; Tian, Z., Particle refining and coarsening method for smoothed particle hydrodynamics simulations, Comput Sci Discovery, 6, 1, 015009, (2013)
[101] Kitsionas, S.; Whitworth, A., Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse, Monthly Notices Royal Astronom Soc, 330, 1, 129-136, (2002)
[102] Lastiwka, M.; Quinlan, N.; Basa, M., Adaptive particle distribution for smoothed particle hydrodynamics, International Journal for Numerical Methods in Fluids, 47, 10-11, 1403-1409, (2005) · Zbl 1064.76087
[103] López, Y. R.; Roose, D.; Morfa, C. R., Dynamic particle refinement in sph: application to free surface flow and non-cohesive soil simulations, Comput Mech, 51, 5, 731-741, (2013) · Zbl 1311.76113
[104] Vacondio, R.; Rogers, B.; Stansby, P., Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing, Int J Numer Methods Fluids, 69, 8, 1377-1410, (2012) · Zbl 1253.76108
[105] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new 3d parallel sph scheme for free surface flows, Comput Fluids, 38, 6, 1203-1217, (2009) · Zbl 1242.76270
[106] Marrone, S.; Bouscasse, B.; Colagrossi, A.; Antuono, M., Study of ship wave breaking patterns using 3d parallel sph simulations, Comput Fluids, 69, 54-66, (2012) · Zbl 1365.76259
[107] Moulinec, C.; Issa, R.; Latino, D.; Vezolle, P.; Emerson, D.; Gu, X., A hybrid openmp-MPI approach for smoothed particle hydrodynamics, Parallel computational fluid dynamics: recent advances and future directions, (2009)
[108] Oger, G.; Le Touzé, D.; Guibert, D.; de Leffe, M.; Biddiscombe, J.; Soumagne, J., On distributed memory mpi-based parallelization of sph codes in massive hpc context, Comput Phys Commun, (2015)
[109] Springel, V., The cosmological simulation code GADGET-2, Monthly Notices Royal Astronom Soc, 364, 1105-1134, (2005)
[110] Domínguez, J. M.; Crespo, A. J.; Valdez-Balderas, D.; Rogers, B. D.; Gómez-Gesteira, M., New multi-gpu implementation for smoothed particle hydrodynamics on heterogeneous clusters, Comput Phys Commun, 184, 8, 1848-1860, (2013)
[111] Hérault, A.; Bilotta, G.; Dalrymple, R. A., SPH on GPU with CUDA, J Hydraul Res, 48, Extra Issue, 74-79, (2010)
[112] Xiong, Q.; Li, B.; Xu, J., Gpu-accelerated adaptive particle splitting and merging in sph, Comput Phys Commun, 184, 7, 1701-1707, (2013)
[113] Bathe, K.-J.; Zhang, H.; Ji, S., Finite element analysis of fluid flows fully coupled with structural interactions, Comput Struct, 72, 1, 1-16, (1999) · Zbl 1072.74545
[114] Hübner, B.; Walhorn, E.; Dinkler, D., A monolithic approach to fluid-structure interaction using space-time finite elements, Comput Methods Appl Mech Eng, 193, 23, 2087-2104, (2004) · Zbl 1067.74575
[115] Michler, C.; Hulshoff, S.; Van Brummelen, E.; de Borst, R., A monolithic approach to fluid-structure interaction, Comput Fluids, 33, 839-848, (2004) · Zbl 1053.76042
[116] Shadloo, M. S.; Zainali, A.; Yildiz, M., Fluid-structure interaction simulation by smoothed particle hydrodynamics, ASME 2010 3rd joint US-European fluids engineering summer meeting collocated with 8th international conference on nanochannels, microchannels, and minichannels, 325-330, (2010), American Society of Mechanical Engineers
[117] Bathe, K.-J.; Zhang, H., Finite element developments for general fluid flows with structural interactions, Int J Numer Meth Eng, 60, 1, 213-232, (2004) · Zbl 1060.76567
[118] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput Meth Appl Mech Eng, 190, 24, 3039-3067, (2001) · Zbl 1001.74040
[119] Maurel, B.; Potapov, S.; Fabis, J.; Combescure, A., Full sph fluid-shell interaction for leakage simulation in explicit dynamics, Int J Numer Meth Engng, 80, 210-234, (2009) · Zbl 1176.76105
[120] Saeur, M., Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics, Int J Impact Eng, 38, 511-520, (2011)
[121] Rafiee, A.; Thiagarajan, K. P., An sph projection method for simulating fluid-hypoelastic structure interaction, Comput Meth Appl Mech Eng, 198, 33, 2785-2795, (2009) · Zbl 1228.76117
[122] Tofighi, N.; Ozbulut, M.; Rahmat, A.; Feng, J. J.; Yildiz, M., An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids, J Comput Phys, 297, 207-220, (2015) · Zbl 1349.76742
[123] Wang, Z.; Lu, Y.; Hao, H.; Chong, K., A full coupled numerical analysis approach for buried structures subjected to subsurface blast, Comput Struct, 83, 4, 339-356, (2005)
[124] Groenenboom, P. H.; Cartwright, B. K., Hydrodynamics and fluid-structure interaction by coupled sph-fe method, J Hydraul Res, 48, S1, 61-73, (2010)
[125] Zhang, Z.; Qiang, H.; Gao, W., Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation, Eng Struct, 33, 1, 255-264, (2011)
[126] Attaway, S.; Heinstein, M.; Swegle, J., Coupling of smooth particle hydrodynamics with the finite element method, Nuclear Eng Des, 150, 199-205, (1994)
[127] Johnson, G., Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations, Nuclear Eng Des, 150, 265-274, (1994)
[128] Groenenboom, P., Numerical simulation of 2d and 3d hypervelocity impact using the sph option in pam-shock, Int J Impact Eng, 20, 309-323, (1997)
[129] De Vuyst, T.; Vignjevic, R.; Campbell, J., Coupling between meshless and finite element methods, Int J Impact Eng, 31, 1054-1064, (2005)
[130] Li, Z.; Leduc, J.; Nunez-Ramirez, J.; Combescure, A.; J-C., M., A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion, Comput Mech, 55, 697-718, (2015) · Zbl 1334.76081
[131] Yang, Q.; Jones, V.; McCue, L., Free-surface flow interactions with deformable structures using an sph-FEM model, Ocean Eng, 55, 136-147, (2012)
[132] Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S., Sph modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells, J Fluids Struct, 39, 126-153, (2013)
[133] Fasanella, E. L.; Jackson, K. E., Impact testing and simulation of a crashworthy composite fuselage section with energy-absorbing seats and dummies, J Am Helicopter Soc, 49, 2, 140-148, (2004)
[134] Ortiz, R.; Charles, J.; Sobry, J., Structural loading of a complete aircraft under realistic crash conditions: generation of a load database for passenger safety and innovative design, Office National D Etudes Et De Recherches Aerospatiales Onera-Publications-Tp, 190, (2004)
[135] Guibert, D.; de Leffe, M.; Oger, G.; Piccinali, J.-C., Efficient parallelisation of 3D SPH schemes., 7th international SPHERIC workshop, Prato, Italy, 259-265, (2012), SPHERIC
[136] Siemann, M. H.; Groenenboom, P. H.L., Modeling and validation of guided ditching tests using a coupled SPH-FE approach, 9th international SPHERIC workshop, Paris, France, 260-267, (2014), SPHERIC
[137] Benítez, L.; Máñez, H.; Siemann, M.; Kohlgrueber, D., Ditching numerical simulations: recent steps in industrial applications, Aerospace structural impact dynamics international conference, Wichita, Kansa (November 6-9, 2012), 12-40, (2012)
[138] Toso, N. R.S., Contribution to the modelling and simulation of aircraft structures impacting on water, (2009), Universität Stuttgart
[139] Hughes, K.; Vignjevic, R.; Campbell, J.; De Vuyst, T.; Djordjevic, N.; Papagiannis, L., From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems, Int J Impact Eng, 61, 48-63, (2013)
[140] Shadloo, M. S.; Zainali, M.; Yildiz, M., Improved solid boundary treatment method for the solution of flow over an airfoil and square obstacle by SPH method, 5th international SPHERIC workshop, Manchester, UK., 37-41, (2010), SPHERIC
[141] González, L. M.; Sánchez, J.; Macia, F.; Duque, D.; Gómez-Goñi, J.; Rodriguez-Pérez, M., WSPH and ISPH calculations of a counter-rotating vortex dipole., 5th international SPHERIC workshop, Manchester, UK., 158-165, (2010), SPHERIC
[142] Groenenboom, P. H.L., SPH for two-phase fluid flow including cavitation, 7th international SPHERIC workshop, Prato, Italy, 333-339, (2012), SPHERIC
[143] Gambioli, F., Fuel loads in large civil airplanes., 4th international SPHERIC workshop, Nantes, France, 246-253, (2009), SPHERIC
[144] He, X.; Zhu, Q.; Chen, L., Fast particle hydrodynamics for battlefield visualization, Int J Adv Comput Technol, 4, 21, 371-379, (2012)
[145] Banim, R., Some industrial sph applications undertaken at the bae systems advanced technology centre, 2nd international SPHERIC workshop, Madrid, Spain, 128-132, (2007)
[146] Fleissner, F.; Eberhard, P., A co-simulation approach for the 3d dynamic simulation of vehicles considering sloshing in cargo and fuel tanks, PAMM, 9, 1, 133-134, (2009)
[147] Fleissner, F.; Lehnart, A.; Eberhard, P., Dynamic simulation of sloshing fluid and granular cargo in transport vehicles, Veh Syst Dyn, 48, 1, 3-15, (2010)
[148] Lehnart, A.; Fleissner, F.; Eberhard, P., Using sph in a co-simulation approach to simulate sloshing in tank vehicles, 9th international SPHERIC workshop, Paris, France, 240-245, (2014)
[149] Barcarolo, D.; Candelier, J.; Guibert, D.; de Leffe, M., Hydrodynamic performance simulations using sph for automotive applications, 9th international SPHERIC workshop, Paris, France, 321-326, (2014)
[150] Oger, G.; Leroy, C.; Jacquin, E.; Le Touzé, D.; Alessandrini, B., Specific pre/post treatments for 3-D SPH applications through massive HPC simulations., 4th international SPHERIC workshop, Nantes, France, 52-60, (2009), SPHERIC
[151] Zhu, Y.; Fox, P. J.; Morris, J. P., A pore-scale numerical model for flow through porous media, Int J Numer Methods Fluids Methods Geomechanics, 23, 9, 881-904, (1999) · Zbl 0957.76067
[152] Jiang, F.; Oliveira, M. S.; Sousa, A., Mesoscale sph modeling of fluid flow in isotropic porous media, Comput Phys Commun, 176, 7, 471-480, (2007) · Zbl 1196.76078
[153] Tartakovsky, A. M.; Meakin, P., Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics, Adv Water Resour, 29, 10, 1464-1478, (2006)
[154] Vakilha, M.; Manzari, M. T., Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics, Transp Porous Media, 74, 3, 331-346, (2008)
[155] Meakin, P.; Tartakovsky, A. M., Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Rev Geophys., 47, 3, (2009)
[156] Church, R. P.; Dischler, J.; Davies, M. B.; Tout, C. A.; Adams, T.; Beer, M. E., Mass transfer in eccentric binaries: the new oil-on-water smoothed particle hydrodynamics technique, Monthly Notices Royal Astronom Soc, 395, 2, 1127-1134, (2009)
[157] Grenier, N.; Le Touzé, D.; Colagrossi, A.; Antuono, M.; Colicchio, G., Viscous bubbly flows simulation with an interface sph model, Ocean Eng, 69, 88-102, (2013)
[158] Acevedo-Malavé, A., A theoretical mesh-free scheme to model viscous drop interactions: a particle-based method, J Theor Appl Phys, 7, 1, 1-11, (2013)
[159] Tartakovsky, A. M.; Meakin, P., A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability, J Comput Phys, 207, 2, 610-624, (2005) · Zbl 1213.76092
[160] Shadloo, M. S.; Yildiz, M., Simulation of Rayleigh-Taylor instability by smoothed particle hydrodynamics: advantages and limitations, Numerical analysis and applied mathematics ICNAAM 2012: international conference of numerical analysis and applied mathematics, 1479, 90-94, (2012), AIP Publishing
[161] Shadloo, M.; Zainali, A.; Yildiz, M., Simulation of single mode Rayleigh-Taylor instability by sph method, Comput Mech, 51, 5, 699-715, (2013) · Zbl 1308.76130
[162] Rahmat, A.; Shadloo, M. S.; Tofighi, N.; Yildiz, M., The simulation of the Rayleigh Taylor instability for high density ratios and infinity bond number with sph method, The third conference on particle-based methods (Particles2013), Stuttgart, Germany, (2013), ECCOMAS
[163] Eow, J. S.; Ghadiri, M., Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology, Chem Eng J, 85, 2, 357-368, (2002)
[164] Rahmat, A.; Shadloo, M. S.; M., Y., The electrohydrodynamics deformation of quiescent bubble under electric field, 8th International SPHERIC Workshop, Trondheim, Norway, 87-94, (2013), SPHERIC
[165] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 1, 146-159, (1994) · Zbl 0808.76077
[166] Agertz, O.; Moore, B.; Stadel, J.; Potter, D.; Miniati, F.; Read, J., Fundamental differences between sph and grid methods, Monthly Notices Royal Astronom Soc, 380, 3, 963-978, (2007) · Zbl 1218.76036
[167] Price, D., Modelling discontinuities and Kelvin-Helmholtz instabilities in sph, J Comput Phys, 227, 24, 10040-10057, (2008) · Zbl 1218.76037
[168] McNally, C. P.; Lyra, W.; Passy, J.-C., A well-posed Kelvin-Helmholtz instability test and comparison, Astrophys J Supplement Series, 201, 2, 18, (2012)
[169] Cha, S.; Inutsuka, S.; Nayakshin, S., Kelvin-Helmholtz instabilities with Godunov smoothed particle hydrodynamics, Monthly Notices Royal Astronom Soc, 403, 3, 1165-1174, (2010)
[170] Shadloo, M.; Yildiz, M., Numerical modeling of Kelvin-Helmholtz instability using smoothed particle hydrodynamics, Int J Numer Methods Eng, 87, 988-1006, (2011) · Zbl 1242.76278
[171] Fatehi, R.; Shadloo, M. S.; Manzari, M. T., Numerical investigation of two-phase secondary Kelvin-Helmholtz instability, Proc Institution Mech Eng Part C, (2013)
[172] Baeten, A., Optimization of lng tank shape in terms of sloshing impact pressure, The nineteenth international offshore and polar engineering conference, (2009), International Society of Offshore and Polar Engineers
[173] Guilcher, P.-M.; Candelier, J.; Béguin, L.; Ducrozet, G.; Le Touzé, D., Simulation of extreme waves impacts on a flng, 8th international SPHERIC workshop, Trondheim, Norway, 301-309, (2013), SPHERIC
[174] Violeau, D.; Buvat, C.; Abed-Meraïm, K.; De Nanteuil, E., Numerical modelling of boom and oil spill with sph, Coastal Eng, 54, 12, 895-913, (2007)
[175] Yang, X.; Liu, M., Numerical modeling of oil spill containment by boom using sph, Science China Physics, Mechanics and Astronomy, 56, 2, 315-321, (2013)
[176] Koukouvinis, P. K.; Anagnostopoulos, J. S.; Papantonis, D. E., Flow modelling in the injector of a pelton turbine, 4th International SPHERIC Workshop, Nantes, France, 257-264, (2009), SPHERIC
[177] Neuhauser, M.; Leboeuf, F.; Marongiu, J.-C.; Parkinson, E.; Robb, D., Simulations of rotor-stator interactions with sph-ale, Advances in Hydroinformatics, 349-361, (2014), Springer
[178] Koukouvinis, P. K.; Anagnostopoulos, J. S.; Papantonis, D. E., Sph method used for flow predictions at a turgo impulse turbine: comparison with fluent, World Acad Sci Eng Tech, 79, 55, 659-666, (2011)
[179] Marongiu, J.; Leboeuf, F.; Parkinson, E., Numerical simulation of the flow in a pelton turbine using the meshless method smoothed particle hydrodynamics: a new simple solid boundary treatment, Proc Institution Mech Eng Part A, 221, 6, 849-856, (2007)
[180] Edge, B.; Gamiel, K.; Dalrymple, R. A.; Hérault, A.; Bilotta, G., Application of gpusph to design of wave energy, 9th international SPHERIC workshop, Paris, France, 342-347, (2014)
[181] Rafiee, A.; Elsaesser, B.; Dias, F., Numerical simulation of wave interaction with an oscillating wave surge converter, ASME 2013 32nd international conference on ocean, offshore and arctic engineering, (2013), American Society of Mechanical Engineers
[182] Tomasicchio, G. R.; Armenio, E.; D’Alessandro, F.; Fonseca, N.; Mavrakos, S. A.; Penchev, V., Design of a 3d physical and numerical experiment on floating off-Shore wind turbines, Coastal Eng Proc, 1, 33, (2012)
[183] Manenti, S.; Ruol, P., Fluid-structure interaction in design of offshore wind turbines: sph modeling of basic aspects, Proceedings international workshop handling exception in structural engineering, Rome, Italy, 13-14, (2008)
[184] Rudman, M.; Cleary, P. W., Rogue wave impact on a tension leg platform: the effect of wave incidence angle and mooring line tension, Ocean Eng, 61, 123-138, (2013)
[185] Sibilla, S., Sph simulation of the flow in a spring safety valve, 3rd international SPHERIC workshop, Lausanne, Switzerland, 262-266, (2008), SPHERIC
[186] Hoefler, C.; Braun, S.; Koch, R.; Bauer, H.-J., Modeling spray formation in gas turbines-new meshless approach, Journal of Engineering for Gas Turbines and Power, 135, 1, 011503, (2013)
[187] Chaniotis, A.; Frouzakis, C.; Lee, J.; Tomboulides, A.; Poulikakos, D.; Boulouchos, K., Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows, J Comput Phys, 191, 1, 1-17, (2003) · Zbl 1054.76069
[188] Tartakovsky, A. M.; Meakin, P.; Scheibe, T. D.; Eichler West, R. M., Simulations of reactive transport and precipitation with smoothed particle hydrodynamics, J Comput Phys, 222, 2, 654-672, (2007) · Zbl 1147.76624
[189] Litvinov, S.; Gaudlitz, D.; Hu, X.; Adams, N., A pool boiling model with sph, 8th international SPHERIC workshop, Trondheim, Norway, 332-337, (2013), SPHERIC
[190] Cleary, P.; Prakash, M.; Ha, J., Novel applications of smoothed particle hydrodynamics (sph) in metal forming, J Mater Process Technol, 177, 1, 41-48, (2006)
[191] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Int J Numer Methods in Eng, 47, 6, 1189-1214, (2000) · Zbl 0964.76071
[192] Kulasegaram, S.; Bonet, J.; Lewis, R.; Profit, M., A variational formulation based contact algorithm for rigid boundaries in two-dimensional sph applications, Comput Mech, 33, 4, 316-325, (2004) · Zbl 1067.74072
[193] Ren, J.; Ouyang, J.; Jiang, T.; Li, Q., Simulation of complex filling process based on the generalized Newtonian fluid model using a corrected sph scheme, Comput Mech, 49, 5, 643-665, (2012) · Zbl 1398.76186
[194] Cleary, P. W.; Savage, G.; Ha, J.; Prakash, M., Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using sph, Comput Particle Mech, 1-15, (2014)
[195] Cleary, P. W.; Ha, J.; Prakash, M.; Nguyen, T., Short shots and industrial case studies: understanding fluid flow and solidification in high pressure die casting, Appl Math Model, 34, 8, 2018-2033, (2010)
[196] Cleary, P.; Ha, J.; Prakash, M.; Nguyen, T., 3d sph flow predictions and validation for high pressure die casting of automotive components, Appl Math Model, 30, 11, 1406-1427, (2006)
[197] Prakash, M.; Cleary, P. W.; Grandfield, J.; Rohan, P., Optimisation of ingot casting wheel design using sph simulations, Progress Comput Fluid Dynamics, an Int J, 7, 2, 101-110, (2007) · Zbl 1388.76307
[198] Cleary, P. W., Extension of sph to predict feeding, freezing and defect creation in low pressure die casting, Appl Math Model, 34, 11, 3189-3201, (2010) · Zbl 1201.76203
[199] Wonisch, A.; Polfer, P.; Kraft, T.; Dellert, A.; Heunisch, A.; Roosen, A., A comprehensive simulation scheme for tape casting: from flow behavior to anisotropy development, J Am Ceramic Soc, 94, 7, 2053-2060, (2011)
[200] Wonisch, A., Entwicklung und anwendung partikelbasierter simulationstechniken für die modellierung von umordnungseffekten und anisotropieentwicklung in pulvertechnologischen prozessen, (2009), Universitätsbibliothek Freiburg
[201] Polfer, P.; Kraft, T., Simulation of particulate suspensions with SPH and application to tape casting processes, 8th international SPHERIC workshop, Trondheim, Norway, 344-349, (2013), SPHERIC
[202] Kulasegaram, S.; Bonet, J.; Lewis, R.; Profit, M., High pressure die casting simulation using a Lagrangian particle method, Commun Numer Methods Eng, 19, 9, 679-687, (2003) · Zbl 1112.76438
[203] Cleary, P. W.; Prakash, M.; Das, R.; Ha, J., Modelling of metal forging using sph, Appl Math Model, 36, 8, 3836-3855, (2012) · Zbl 1252.74009
[204] Sadek, S. H.; Yildiz, M., Modeling die swell of second-order fluids using smoothed particle hydrodynamics, J Fluids Eng, 135, 5, 051103, (2013)
[205] Limido, J.; Espinosa, C.; Salaün, M.; Lacome, J.-L., Sph method applied to high speed cutting modelling, Int J Mech Sci, 49, 7, 898-908, (2007)
[206] Akarca, S.; Song, X.; Altenhof, W.; Alpas, A., Deformation behaviour of aluminium during machining: modelling by Eulerian and smoothed-particle hydrodynamics methods, Proc Institution Mech Eng Part L, 222, 3, 209-221, (2008)
[207] Takaffoli, M.; Papini, M., Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics, Wear, 274, 50-59, (2012)
[208] Spreng, F.; Eberhard, P.; Fleissner, F., An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms, Theor Appl Mech Lett, 3, 1, 013005, (2013)
[209] Ma, L.; Bao, R.-h.; Guo, Y.-m., Waterjet penetration simulation by hybrid code of sph and fea, Int J Impact Eng, 35, 9, 1035-1042, (2008)
[210] Shahverdi, H.; Zohoor, M.; Mousavi, S. M., Numerical simulation of abrasive water jet cutting process using the sph and ale methods, Int J Adv Des Manuf Technol, 5, 1, 43-50, (2012)
[211] Feng, Y.; Jianming, W.; Feihong, L., Numerical simulation of single particle acceleration process by sph coupled FEM for abrasive waterjet cutting, Int J Adv Manuf Technol, 59, 1-4, 193-200, (2012)
[212] Calamaz, M.; Limido, J.; Nouari, M.; Espinosa, C.; Coupard, D.; Salaün, M., Toward a better understanding of tool wear effect through a comparison between experiments and sph numerical modelling of machining hard materials, Int J Refractory Metals Hard Mater, 27, 3, 595-604, (2009)
[213] Jianming, W.; Na, G.; Wenjun, G., Abrasive waterjet machining simulation by sph method, Int J Adv Manuf Technol, 50, 1-4, 227-234, (2010)
[214] Nutto, C.; Bierwisch, C.; Lagger, H.; Moseler, M.; H¿ohn, S.; Bremerstein, T., Towards simulations of abrasive flow machining., 7th International SPHERIC Workshop, Prato, Italy, 59-64, (2012), SPHERIC
[215] Robinson, M.; Cleary, P. W., The influence of Cam geometry and operating conditions on chaotic mixing of viscous fluids in a twin Cam mixer, AICHE J, 57, 3, 581-598, (2011)
[216] Robinson, M.; Cleary, P. W., Flow and mixing performance in helical ribbon mixers, Chem Eng Sci, 84, 382-398, (2012)
[217] Shamsoddini, R.; Sefid, M.; Fatehi, R., Lagrangian simulation and analysis of the micromixing phenomena in a cylindrical paddle mixer using a modified weakly compressible smoothed particle hydrodynamics method, Asia-Pacific J Chem Eng, (2014)
[218] Eitzlmayr, A.; Koscher, G.; Khinast, J., A novel method for modeling of complex wall geometries in smoothed particle hydrodynamics, Comput Phys Commun, (2014)
[219] Shamsoddini, R.; Sefid, M.; Fatehi, R., Incompressible sph modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer, J Mech Sci Technol, 30, 1, 307-316, (2016)
[220] Cleary, P. W.; Sinnott, M.; Morrison, R., Prediction of slurry transport in sag Mills using sph fluid flow in a dynamic dem based porous media, Minerals Eng, 19, 15, 1517-1527, (2006)
[221] Sinnott, M.; Cleary, P. W.; Morrison, R. D., Slurry flow in a tower mill, Minerals Eng, 24, 2, 152-159, (2011)
[222] Cleary, P. W.; Morrison, R. D., Prediction of 3d slurry flow within the grinding chamber and discharge from a pilot scale sag mill, Minerals Eng, 39, 184-195, (2012)
[223] Tartakovsky, A.; Grant, G.; Sun, X.; Khaleel, M., Modeling of friction stir welding (fsw) process with smooth particle hydrodynamics (sph), Tech. Rep., (2006), SAE Technical Paper
[224] Pan, W.; Li, D.; Tartakovsky, A. M.; Ahzi, S.; Khraisheh, M.; Khaleel, M., A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy, Int J Plasticity, 48, 189-204, (2013)
[225] Jianming, W.; Feihong, L.; Feng, Y.; Gang, Z., Shot peening simulation based on sph method, Int J Adv Manuf Tech, 56, 5-8, 571-578, (2011)
[226] Adami, S.; Hu, X.; Adams, N., A conservative sph method for surfactant dynamics, J Comput Phys, 229, 5, 1909-1926, (2010) · Zbl 1329.76281
[227] Adami, S.; Hu, X.; Adams, N., 3d drop deformation and breakup in simple shear flow considering the effect of insoluble surfactant, Proceedings of the 5th international SPHERIC workshop, 15-20, (2010)
[228] Wang, J.; Shimada, K.; Mizutani, M.; Kuriyagawa, T., Material removal during ultrasonic machining using smoothed particle hydrodynamics, Int J of Automation Technol Vol, 7, 6, 615, (2013)
[229] Zhang, M.; Zhang, H.; Zheng, L., Numerical investigation of substrate melting and deformation during thermal spray coating by sph method, Plasma Chem Plasma Process, 29, 1, 55-68, (2009)
[230] Yin, S.; Wang, X.-f.; Xu, B.-p.; Li, W.-y., Examination on the calculation method for modeling the multi-particle impact process in cold spraying, J Thermal Spray Technol, 19, 5, 1032-1041, (2010)
[231] Lemiale, V.; King, P.; Rudman, M.; Prakash, M.; Cleary, P.; Jahedi, M., Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics, Surface and Coatings Technology, 254, 121-130, (2014)
[232] Laackmann, J.; Säckel, W.; Cepelyte, L.; Walag, K.; Sedelmayer, R.; Keller, F., Experimental investigation and numerical simulation of spray processes, Macromolecular symposia, 302, 235-244, (2011), Wiley Online Library
[233] Säckel, W.; Huber, M.; Hirschler, M.; Kunz, P.; Nieken, U., Drying and morphology evolution of single droplets in spray processes, 9th international SPHERIC workshop, Paris, France, 154-161, (2014), SPHERIC
[234] Zhang, M.; Zhang, H.; Zheng, L., Application of smoothed particle hydrodynamics method to free surface and solidification problems, Numer Heat Transfer, Part A, 52, 4, 299-314, (2007)
[235] Zhang, M.; Zhang, H.; Zheng, L., Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method, Int J Heat Mass Transfer, 51, 13, 3410-3419, (2008) · Zbl 1148.80368
[236] Prakash, M.; Cleary, P.; Grandfield, J., Modelling of metal flow and oxidation during furnace emptying using smoothed particle hydrodynamics, J Mater Process Technol, 209, 7, 3396-3407, (2009)
[237] Prakash, M.; Cleary, P. W.; Taylor, J. A., Sph modeling of the effect of crucible tipping rate on oxide formation, Materials Science Forum, 693, 54-62, (2011), Trans Tech Publ
[238] Riviere, S.; Farzaneh, S.; Tcharkhtchi, A.; Khelladi, S.; Bakir, F., Flow prediction of reactive rotational molding using smoothed particle hydrodynamics method, 7th international SPHERIC workshop, Prato, Italy, 78-83, (2012), SPHERIC
[239] Hamidi, A.; Illoul, L.; Tcharkhtchi, A.; Khelladi, S.; Bakir, F., Implementation of surface tension in polymer flow during reactive rotational molding, 9th International SPHERIC Workshop, Paris, France, 87-94, (2014), SPHERIC
[240] Spreng, F.; Schnabel, D.; Mueller, A.; Eberhard, P., A local adaptive discretization algorithm for smoothed particle hydrodynamics, Comput Particle Mech, 1, 2, 131-145, (2014)
[241] Vázquez-Quesada, A.; Ellero, M.; Español, P., A sph-based particle model for computational microrheology, Microfluidics Nanofluidics, 13, 2, 249-260, (2012)
[242] Bian, X.; Litvinov, S.; Qian, R.; Ellero, M.; Adams, N. A., Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics, Phys Fluids (1994-present), 24, 1, 012002, (2012)
[243] Benz, W.; Asphaug, E., Simulations of brittle solids using smooth particle hydrodynamics, Comput Phys Commun, 87, 1, 253-265, (1995) · Zbl 0918.73335
[244] Lee, M.; Yoo, Y., Analysis of ceramic/metal armour systems, Int J Impact Eng, 25, 9, 819-829, (2001)
[245] Das, R.; Cleary, P., Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics, Theor Appl Fracture Mech, 53, 1, 47-60, (2010)
[246] Ma, G.; Wang, X.; Ren, F., Numerical simulation of compressive failure of heterogeneous rock-like materials using sph method, Int J Rock Mech Mining Sci, 48, 3, 353-363, (2011)
[247] Lacome, J.-L.; Limido, J.; Espinosa, C., Sph formulation with Lagrangian Eulerian adaptive kernel, 4th international SPHERIC workshop, Nantes, France, 294-301, (2009), SPHERIC
[248] Cercos-Pita, J. L., Aquagpusph, a new free 3d sph solver accelerated with opencl, Comput Phys Commun, 192, 295-312, (2015) · Zbl 1380.65467
[249] Monaghan, J., Gravity currents and solitary waves, Physica D, 98, 2, 523-533, (1996) · Zbl 0899.76099
[250] Monaghan, J.; Kos, A., Scott russells wave generator, Phys Fluids (1994-present), 12, 3, 622-630, (2000) · Zbl 1149.76485
[251] Gomez-Gesteira, M.; Rogers, B. D.; Dalrymple, R. A.; Crespo, A. J., State-of-the-art of classical sph for free-surface flows, J Hydraul Res, 48, S1, 6-27, (2010)
[252] Monaghan, J.; Kos, A., Solitary waves on a cretan beach, J Waterway, Port, Coastal, Ocean Eng, 125, 3, 145-155, (1999)
[253] Dalrymple, R.; Rogers, B., Numerical modeling of water waves with the sph method, Coastal Eng, 53, 2, 141-147, (2006)
[254] ZHENG, K.; SUN, Z.-c.; SUN, J.-w.; ZHANG, Z.-m.; YANG, G.-p.; ZHOU, F., Numerical simulations of water wave dynamics based on sph methods, J Hydrodyn, Ser B, 21, 6, 843-850, (2009)
[255] Staroszczyk, R., Simulation of solitary wave mechanics by a corrected smoothed particle hydrodymamics method, Archives of Hydro-Eng Environ Mech, 58, 1-4, 23-45, (2011)
[256] GOTOH, H.; SAKAI, T., Lagrangian simulation of breaking waves using particle method, Coastal Eng J, 41, 03n04, 303-326, (1999)
[257] YM Lo, E.; Shao, S., Simulation of near-Shore solitary wave mechanics by an incompressible sph method, Appl Ocean Res, 24, 5, 275-286, (2002)
[258] Landrini, M.; Colagrossi, A.; Greco, M.; Tulin, M., Gridless simulations of splashing processes and near-Shore bore propagation, J Fluid Mech, 591, 183-213, (2007) · Zbl 1125.76326
[259] De Leffe, M.; Le Touzé, D.; Alessandrini, B., Sph modeling of shallow-water coastal flows, J Hydraul Res, 48, S1, 118-125, (2010)
[260] Gómez-Gesteira, M.; Dalrymple, R. A., Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure, J Waterway, Port, Coastal Ocean Eng, 130, 2, 63-69, (2004)
[261] Barreiro, A.; Crespo, A.; Domínguez, J.; Gómez-Gesteira, M., Smoothed particle hydrodynamics for coastal engineering problems, Comput Struct, 120, 96-106, (2013)
[262] Marrone, S.; Colagrossi, A.; Le Touzé, D.; Graziani, G., Fast free-surface detection and level-set function definition in sph solvers, J Comput Phys, 229, 10, 3652-3663, (2010) · Zbl 1391.76623
[263] Farahani, R. J.; Dalrymple, R. A.; Hérault, A.; Bilotta, G., Three-dimensional sph modeling of a bar/rip channel system, J Waterway, Port, Coastal, Ocean Eng, 140, 1, 82-99, (2013)
[264] Farahani, R. J.; Dalrymple, R. A., Three-dimensional reversed horseshoe vortex structures under broken solitary waves, Coastal Eng, 91, 261-279, (2014)
[265] Shao, S., Sph simulation of solitary wave interaction with a curtain-type breakwater, J Hydraul Res, 43, 4, 366-375, (2005)
[266] Ren, B.; Jin, Z.; Gao, R.; Wang, Y.-x.; Xu, Z.-l., Sph-dem modeling of the hydraulic stability of 2d blocks on a slope, J Waterway, Port, Coastal, Ocean Eng, (2013)
[267] Altomare, C.; Crespo, A.; Rogers, B.; Dominguez, J.; Gironella, X.; Gómez-Gesteira, M., Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics, Comput Struct, 130, 34-45, (2014)
[268] Marrone, S.; Colagrossi, A.; Antuono, M.; Lugni, C.; Tulin, M., A 2D+t sph model to study the breaking wave pattern generated by fast ships, J Fluids Struct, 27, 8, 1199-1215, (2011)
[269] Cartwright, B.; Groenenboom, P.; McGuckin, D., Examples of ship motion and wash predictions by smoothed particle hydrodynamics (sph), 9th symposium on practical design of ships and other floating structures, Luebeck-Travemuende, Germany, (2004)
[270] Cartwright, B.; Xia, J.; Cannon, S.; McGuckin, D.; Groenenboom, P., Motion prediction of ships and yachts by smoothed particle hydrodynamics, 2nd high performance yacht design conference, 14-16, (2006)
[271] Omidvar, P.; Stansby, P. K.; Rogers, B. D., Wave body interaction in 2d using smoothed particle hydrodynamics (sph) with variable particle mass, Int J Numer Methods Fluids, 68, 6, 686-705, (2012) · Zbl 1427.76190
[272] Shao, S., Incompressible sph simulation of water entry of a free-falling object, Int J Numer Methods Fluids, 59, 1, 91-115, (2009) · Zbl 1391.76633
[273] Maruzewski, P.; Le Touzé, D.; Oger, G.; Avellan, F., Sph high-performance computing simulations of rigid solids impacting the free-surface of water, J Hydraul Res, 48, S1, 126-134, (2010)
[274] Monaghan, J.; Kos, A.; Issa, N., Fluid motion generated by impact, Journal of Waterway, Port, Coastal, and Ocean Eng, 129, 6, 250-259, (2003)
[275] GONG, K.; LIU, H.; WANG, B.-l., Water entry of a wedge based on sph model with an improved boundary treatment, J Hydrodyn, Ser B, 21, 6, 750-757, (2009)
[276] Groenenboom, P. H., Lifeboat water entry simulation by the hybrid sph-fe method, Proceedings of 3rd SPHERIC Workshop, 180-186, (2008)
[277] Yang, Q., Sph simulation of fluid-structure interaction problems with application to hovercraft, (2011), Faculty of the Virginia Polytechnic Institute and State University, Ph.D. thesis
[278] Gómez-Gesteira, M.; Cerqueiro, D.; Crespo, C.; Dalrymple, R., Green water overtopping analyzed with a sph model, Ocean Eng, 32, 2, 223-238, (2005)
[279] Shao, S.; Ji, C.; Graham, D. I.; Reeve, D. E.; James, P. W.; Chadwick, A. J., Simulation of wave overtopping by an incompressible sph model, Coastal Eng, 53, 9, 723-735, (2006)
[280] Hirdaris, S.; Bai, W.; Dessi, D.; Ergin, A.; Gu, X.; Hermundstad, O., Loads for use in the design of ships and offshore structures, Ocean Eng, 78, 131-174, (2014)
[281] Faltinsen, O.; Greco, M.; Landrini, M., Green water loading on a fpso, J Offshore Mech Arctic Eng, 124, 2, 97-103, (2002)
[282] Le Touzé, D.; Marsh, A.; Oger, G.; Guilcher, P.-M.; Khaddaj-Mallat, C.; Alessandrini, B., Sph simulation of Green water and ship flooding scenarios, J Hydrodyn, Ser B, 22, 5, 231-236, (2010)
[283] Cleary, P. W.; Prakash, M.; Sinnott, M. D.; Rudman, M.; Das, R., Large scale simulation of industrial, engineering and geophysical flows using particle methods, Particle-based methods, 89-111, (2011), Springer
[284] Oger, G.; Le Touzé, D.; Guilcher, P.-M.; de Leffe, M., Advances in sph for naval hydrodynamics, 30th symposium on naval hydrodynamics Hobart, Australia, (2014)
[285] Zhang, A.-m.; Cao, X.-y.; Ming, F.-r.; Zhang, Z.-F., Investigation on a damaged ship model sinking into water based on three dimensional sph method, Appl Ocean Res, 42, 24-31, (2013)
[286] Vassalos, D., Damage stability and survivability-nailing passenger ship safety problems, Ships and Offshore Struct, 9, 3, 237-256, (2014)
[287] Hashimoto, H.; Le Touz, D.; Grenier, N.; Sueyoshi, M., Investigation of ship flooding situations by mps and sph methods compared to dedicated experiments, 9th international SPHERIC workshop, Paris, France, 395-3402, (2014)
[288] Canelas, R. B.; Crespo, A. J.; Domínguez, J. M.; Ferreira, R. M.; Gómez-Gesteira, M., Sph-dcdem model for arbitrary geometries in free surface solid-fluid flows, Comput Phys Commun, 202, 131-140, (2016)
[289] STEFANOVA, B.; SEITZ, K.; BUBEL, J.; GRABE, J., Water-soil interaction simulation using smoothed particle hydrodynamics, 695-704, (2012)
[290] Ulrich, C.; Leonardi, M.; Rung, T., Multi-physics sph simulation of complex marine-engineering hydrodynamic problems, Ocean Eng, 64, 109-121, (2013)
[291] Ulrich, C.; Rung, T., Sph simulations of ship propeller induced harbour bed erosion, ASME 2012 31st international conference on ocean, offshore and arctic engineering, 153-162, (2012), American Society of Mechanical Engineers
[292] Xie, J.; Nistor, I.; Murty, T., A corrected 3-d sph method for breaking tsunami wave modelling, Natural Hazards, 60, 1, 81-100, (2012)
[293] Shadloo, M. S.; Weiss, R.; Yildiz, M.; Dalrymple, R. A., Numerical simulation of long wave runup for breaking and nonbreaking waves, Int J Offshore Polar Eng, 25, 01, 1-7, (2015)
[294] Vacondio, R.; Rogers, B.; Stansby, P.; Mignosa, P., Sph modeling of shallow flow with open boundaries for practical flood simulation, J Hydraul Eng, 138, 6, 530-541, (2011)
[295] Vacondio, R.; Rogers, B.; Stansby, P.; Mignosa, P., Shallow water sph for flooding with dynamic particle coalescing and splitting, Adv Water Resour, 58, 10-23, (2013)
[296] Zainali, A.; Weiss, R., Boulder dislodgement and transport by solitary waves: insights from three-dimensional numerical simulations, Geophys Res Lett, 42, 11, 4490-4497, (2015)
[297] Crespo, A. J.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R., Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (sph), Comput Phys Commun, 187, 204-216, (2015) · Zbl 1348.76005
[298] St-Germain, P.; Nistor, I.; Townsend, R.; Shibayama, T., Sph numerical modeling of structures impacted by tsunami bores, J Waterway, Port, Coastal, Ocean Eng, 140, (2013)
[299] Piché, S., Numerical modeling of tsunami bore attenuation and extreme hydrodynamic impact forces using the sph method, (2014), University of Ottawa, Ph.D. thesis
[300] Wei, Z.; Dalrymple, R. A.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H., Sph modeling of dynamic impact of tsunami bore on bridge piers, Coastal Eng, 104, 26-42, (2015)
[301] Barreiro, A.; Domnguez, J.; C. Crespo, A.; Gonzlez-Jorge, H.; Roca, D., Integration of UAV photogrammetry and sph modelling of fluids to study runoff on real terrains, PLoS ONE, 9, 11, e111031, (2014)
[302] Bui, H.; Fukagawa, R.; Sako, K.; Wells, J., Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (sph), Geotechnique, 61, 7, 565-574, (2010)
[303] Wang, D.; Li, Z.; Li, L.; Wu, Y., Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium, Sci China Technol Sci, 54, 3, 573-580, (2011) · Zbl 1419.74264
[304] McDougall, S.; Hungr, O., A model for the analysis of rapid landslide motion across three-dimensional terrain, Canadian Geotech J, 41, 6, 1084-1097, (2004)
[305] Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V., A depth-integrated, coupled sph model for flow-like landslides and related phenomena, Int J Numer Methods Fluids Methods Geomechanics, 33, 2, 143-172, (2009) · Zbl 1272.74464
[306] Roubtsova, V.; Kahawita, R., The sph technique applied to free surface flows, Comput Fluids, 35, 10, 1359-1371, (2006) · Zbl 1177.76327
[307] Prakash, M.; Rothauge, K.; Cleary, P. W., Modelling the impact of dam failure scenarios on flood inundation using sph, Appl Math Model, (2014)
[308] Vacondio, R.; Mignosa, P.; Pagani, S., 3d sph numerical simulation of the wave generated by the vajont rockslide, Adv Water Resour, 59, 146-156, (2013)
[309] Ataie-Ashtiani, B.; Shobeyri, G., Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics, Int J Numer Methods Fluids, 56, 2, 209-232, (2008) · Zbl 1353.76018
[310] Capone, T.; Panizzo, A.; Monaghan, J. J., Sph modelling of water waves generated by submarine landslides, J Hydraul Res, 48, S1, 80-84, (2010)
[311] Ulrich, C.; Rung, T., Sph modelling of water/soil-suspension flows, Proceedings of the 5th international SPHERIC workshop, 61-67, (2010)
[312] Krištof, P.; Beneš, B.; Křivánek, J.; Št’ava, O., Hydraulic erosion using smoothed particle hydrodynamics, Computer graphics forum, 28, 219-228, (2009), Wiley Online Library
[313] Manenti, S.; Sibilla, S.; Gallati, M.; Agate, G.; Guandalini, R., Sph simulation of sediment flushing induced by a rapid water flow, J Hydraul Eng, 138, 3, 272-284, (2011)
[314] El Shamy, U.; Zeghal, M., Coupled continuum-discrete model for saturated granular soils, J Eng Mech, 131, 4, 413-426, (2005)
[315] Li, X.; Chu, X.; Sheng, D., A saturated discrete particle model and characteristic-based sph method in granular materials, Int J Numer Methods Eng, 72, 7, 858-882, (2007) · Zbl 1194.76231
[316] Chen, W.; Qiu, T., Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method, Int J Geomechanics, 12, 2, 127-135, (2011)
[317] Dominguez, J. M.; Crespo, A. J.C.; Barreiro, A.; Gomez-Gesteira, M.; Rogers, B. D., Efficient implementation of double precision in gpu computing to simulate realistic cases with high resolution, 9th international SPHERIC workshop, Paris, France, 140-145, (2014)
[318] Shao, S., Incompressible sph flow model for wave interactions with porous media, Coastal Eng, 57, 3, 304-316, (2010)
[319] Maeda, K.; Sakai, H., Seepage failure and erosion of ground with air bubble dynamics, Geoenviron Eng Geotechnics, 204, 261, (2010)
[320] Bui, H. H.; Fukagawa, R., An improved sph method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure, Int J Numer Methods Fluids Methods in Geomechanics, 37, 1, 31-50, (2013)
[321] Naili, M.; Matsushima, T.; Yamada, Y., A 2d smoothed particle hydrodynamics method for liquefaction induced lateral spreading analysis, J Appl Mech, 8, 591-599, (2005)
[322] Manenti, S.; Sibilla, S.; Gallati, M.; Agate, G.; Guandalini, R., Experimental and numerical modeling of the impulsive dynamics of an underwater non-cohesive sediment deposit subjected to a gaseous jet, 7th international SPHERIC workshop, Prato, Italy, 381-386, (2012), SPHERIC
[323] Gutfraind, R.; Savage, S. B., Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations, Mech Materials, 29, 1, 1-17, (1998)
[324] Shen, H. T.; Su, J.; Liu, L., Sph simulation of river ice dynamics, J Comput Phys, 165, 2, 752-770, (2000) · Zbl 1030.76047
[325] Lindsay, R.; Stern, H., A new Lagrangian model of arctic sea ice, Journal of physical oceanography, 34, 1, 272-283, (2004)
[326] Pan, W.; Tartakovsky, A. M.; Monaghan, J. J., A smoothed-particle hydrodynamics model for ice-sheet and ice-shelf dynamics, J Glaciology, 58, 208, 216-222, (2012)
[327] Hérault, A.; Bilotta, G.; Vicari, A.; Rustico, E.; Del Negro, C., Numerical simulation of lava flow using a gpu sph model, Ann Geophys, 54, 5, (2011)
[328] Prakash, M.; Cleary, P. W., Three dimensional modelling of lava flow using smoothed particle hydrodynamics, Appl Math Model, 35, 6, 3021-3035, (2011) · Zbl 1219.86003
[329] Huang, Y.; Dai, Z., Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method, Eng Geology, 168, 86-97, (2014)
[330] Monaghan, J., Implicit sph drag and dusty gas dynamics, J Comput Phys, 138, 2, 801-820, (1997) · Zbl 0947.76066
[331] Nelson, R. P.; Langer, W. D., The dynamics of low-mass molecular clouds in external radiation fields, Astrophys J, 482, 2, 796, (1997)
[332] Monaghan, J. J.; Lattanzio, J. C., A simulation of the collapse and fragmentation of cooling molecular clouds, Astrophys J, 375, 177-189, (1991)
[333] Springel, V.; Hernquist, L., Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation, Monthly Notices Royal Astronom Soc, 339, 2, 289-311, (2003)
[334] Sommer-Larsen, J.; Gelato, S.; Vedel, H., Formation of disk galaxies: feedback and the angular momentum problem, Astrophys J, 519, 2, 501, (1999)
[335] Sugimoto, S.; Zempo, Y., Application of modified sph to quantum mechanical problems, 8th international SPHERIC workshop, Trondheim, Norway, 338-343, (2013), SPHERIC
[336] Benz, W., Applications of smooth particle hydrodynamics (sph) to astrophysical problems, Comput Phys Commun, 48, 1, 97-105, (1988)
[337] Rasio, F. A.; Lombardi Jr, J. C., Smoothed particle hydrodynamics calculations of stellar interactions, J Comput Appl Math, 109, 1, 213-230, (1999) · Zbl 0944.76066
[338] Thacker, R.; Couchman, H., Star formation, supernova feedback, and the angular momentum problem in numerical cold dark matter cosmogony: halfway there?, Astrophys J Lett, 555, 1, L17, (2001)
[339] Bromm, V.; Yoshida, N.; Hernquist, L., The first supernova explosions in the universe, Astrophys J Lett, 596, 2, L135, (2003)
[340] Tanaka, N.; Takano, T., Microscopic-scale simulation of blood flow using sph method, Int J Comput Methods, 2, 04, 555-568, (2005) · Zbl 1137.76837
[341] Hosseini, S. M.; Feng, J. J., A particle-based model for the transport of erythrocytes in capillaries, Chem Eng Sci, 64, 22, 4488-4497, (2009)
[342] Beg, O. A.; Vasu, B.; Sochi, T.; Prasad, V., Keller box and smoothed particle hydrodynamic numerical simulation of two-phase transport in blood purification auto-transfusion dialysis hybrid device with Stokes and Darcy number effects, J Adv Biotechnol Bioeng, 1, 2, 80-100, (2013)
[343] Moreno, N.; Vignal, P.; Li, J.; Calo, V. M., Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics, Procedia Computer Science, 18, 2565-2574, (2013)
[344] Sinnott, M.; Cleary, P. W.; Prakash, M., An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method, Proceedings fifth international conference on CFD in the process industries, (2006)
[345] Chui, Y.-P.; Heng, P.-A., A meshless rheological model for blood-vessel interaction in endovascular simulation, Progress Biophys Molecular Biol, 103, 2, 252-261, (2010)
[346] Shahriari, S.; Maleki, H.; Hassan, I.; Kadem, L., Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics, J Biomech, 45, 15, 2637-2644, (2012)
[347] Apfel, R. E.; Tian, Y.; Jankovsky, J.; Shi, T.; Chen, X.; Holt, R. G., Free oscillations and surfactant studies of superdeformed drops in microgravity, Phys Rev Lett, 78, 10, 1912, (1997)
[348] Liu, M.; Liu, G., Meshfree particle simulation of micro channel flows with surface tension, Comput Mech, 35, 5, 332-341, (2005) · Zbl 1109.76355
[349] Hirschler, M.; Kunz, P.; Huber, M.; Hahn, F.; Nieken, U., Open boundary conditions for isph and their application to micro-flow, J Comput Phys, doi:10.1016/j.jcp.2015.12.024, (2015)
[350] Quinlan, N.; Kendall, M.; Bellhouse, B.; Ainsworth, R., Investigations of gas and particle dynamics in first generation needle-free drug delivery devices, Shock Waves, 10, 6, 395-404, (2001)
[351] Kajtar, J.; Monaghan, J. J., Sph simulations of swimming linked bodies, J Comput Phys, 227, 19, 8568-8587, (2008) · Zbl 1196.76026
[352] Cohen, R. C.; Cleary, P. W.; Mason, B. R., Simulations of dolphin kick swimming using smoothed particle hydrodynamics, Human Movement Science, 31, 3, 604-619, (2012)
[353] Müller, M.; Schirm, S.; Teschner, M., Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics, Technol Health Care, 12, 1, 25-31, (2004)
[354] Qin, J.; Pang, W.-M.; Nguyen, B. P.; Ni, D.; Chui, C.-K., Particle-based simulation of blood flow and vessel wall interactions in virtual surgery, Proceedings of the 2010 symposium on information and communication technology, 128-133, (2010), ACM
[355] Federrath, C.; Banerjee, R.; Clark, P. C.; Klessen, R. S., Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in amr and sph, Astrophysical J, 713, 1, 269, (2010)
[356] Price, D. J.; Federrath, C.; Brunt, C. M., The density variance-Mach number relation in supersonic, isothermal turbulence, Astrophys J Lett, 727, 1, L21, (2011)
[357] Liu, M.; Liu, G.; Lam, K.; Zong, Z., Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations, Shock Waves, 12, 6, 509-520, (2003)
[358] Liu, M.; Liu, G.; Zong, Z.; Lam, K., Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology, Comput Fluids, 32, 3, 305-322, (2003) · Zbl 1009.76525
[359] Monaghan, J.; Gingold, R., Shock simulation by the particle method sph, J Comput Phys, 52, 2, 374-389, (1983) · Zbl 0572.76059
[360] Pfrommer, C.; Springel, V.; Enßlin, T. A.; Jubelgas, M., Detecting shock waves in cosmological smoothed particle hydrodynamics simulations, Monthly Notices Royal Astronom Soc, 367, 1, 113-131, (2006)
[361] Omang, M.; Trulsen, J., Multi-phase shock simulations with smoothed particle hydrodynamics (sph), Shock Waves, 1-16, (2014)
[362] Lee, E.-S.; Violeau, D.; Issa, R.; Ploix, S., Application of weakly compressible and truly incompressible sph to 3-d water collapse in waterworks, J Hydraul Res, 48, S1, 50-60, (2010)
[363] Saunders, K.; Prakash, M.; Cleary, P. W.; Cordell, M., Application of smoothed particle hydrodynamics for modelling gated spillway flows, Appl Math Model, (2014)
[364] López, D.; Marivela, R.; Garrote, L., Smoothed particle hydrodynamics model applied to hydraulic structures: a hydraulic jump test case, J Hydraul Res, 48, S1, 142-158, (2010)
[365] De Padova, D.; Mossa, M.; Sibilla, S.; Torti, E., 3d sph modelling of hydraulic jump in a very large channel, J Hydraul Res, 51, 2, 158-173, (2013)
[366] Johnson, G. R.; Stryk, R. A.; Beissel, S. R., Sph for high velocity impact computations, Comput Meth Appl Mech Eng, 139, 1, 347-373, (1996) · Zbl 0895.76069
[367] Chuzel-Marmot, Y.; Ortiz, R.; Combescure, A., Three dimensional sph-FEM gluing for simulation of fast impacts on concrete slabs, Comput Struct, 89, 23, 2484-2494, (2011)
[368] Potapov, S.; Maurel, S.; Combescure, A.; Fabis, J., Modeling accidental-type fluid-structure interaction problems with the sph method, Comput Struct, 87, 721-734, (2009)
[369] Cleary, P. W., Modelling confined multi-material heat and mass flows using sph, Appl Math Model, 22, 12, 981-993, (1998)
[370] Cleary, P. W.; Monaghan, J. J., Conduction modelling using smoothed particle hydrodynamics, J Comput Phys, 148, 1, 227-264, (1999) · Zbl 0930.76069
[371] Rook, R.; Yildiz, M.; Dost, S., Modeling transient heat transfer using sph and implicit time integration, Numer Heat Transfer Part B, 51, 1, 1-23, (2007)
[372] Tantisiriwat W., Sumleeon A., Kanongchaiyos P.. A crowd simulation using individual-knowledge-merge based path construction and smoothed particle hydrodynamics2007;.
[373] Vetter, C.; Oetting, L.; Ulrich, C.; Rung, T., Sph simulations of Pedestrian crowds, Proceedings 6th international SPHERIC workshop, 261-268, (2011)
[374] Monaghan, J., A turbulence model for smoothed particle hydrodynamics, Eur J Mech-B/Fluids, 30, 4, 360-370, (2011) · Zbl 1258.76124
[375] Violeau, D.; Issa, R., Numerical modelling of complex turbulent free-surface flows with the sph method: an overview, Int J Numer Methods Fluids, 53, 2, 277-304, (2007) · Zbl 1227.76022
[376] Price, D.; Monaghan, J., Smoothed particle magnetohydrodynamics-i. algorithm and tests in one dimension, Monthly Notices Royal Astronom Soc, 348, 1, 123-138, (2004)
[377] Wieth, L.; Braun, S.; Koch, R.; Bauer, H.-J.; Kelemen, K.; Schuchmann, H. P., Smoothed particle hydrodynamics (sph) simulation of a high-pressure homogenizer, 9th international SPHERIC workshop, Paris, France, 411-418, (2014), SPHERIC
[378] Hermange, C.; Le Touzé, D.; Oger, G., Energy considerations in sph/FEM coupling, Proc. 10th international SPHERIC workshop, Parma, Italy, (2015), SPHERIC
[379] Spheric. 2005. https://wiki.manchester.ac.uk/spheric/index.php/SPHERIC_Home_Page.
[380] Mas-Gallic, S.; Raviart, P., A particle method for first-order symmetric systems, Numerische Mathematik, 51, 3, 323-352, (1987) · Zbl 0625.65084
[381] Fatehi, R.; Manzari, M., Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput Math Appl, 61, 2, 482-498, (2011) · Zbl 1211.76089
[382] Graham, D. I.; Hughes, J. P., Accuracy of sph viscous flow models, Int J Numer Methods Fluids, 56, 8, 1261-1269, (2008) · Zbl 1155.76048
[383] Oger, G.; Guilcher, P.-M.; Jacquin, E.; Brosset, L.; Deuff, J.-B.; Le Touzé, D., Simulations of hydro-elastic impacts using a parallel sph model, Int J Polar Offshore Eng, 20, 3, 181-189, (2010)
[384] Hosseini, S. M.; Feng, J. J., Pressure boundary conditions for computing incompressible flows with sph, J Comput Phys, 230, 19, 7473-7487, (2011) · Zbl 1408.76413
[385] Shadloo M.S., Yıldız M.. Kelvin-helmholtz instability by sph2011;. · Zbl 1242.76278
[386] Ferrand, M.; Violeau, D.; Mayrhofer, A.; Mahmood, O., Correct boundary conditions for turbulent sph, Advances in Hydroinformatics, 245-258, (2014), Springer
[387] Bierbrauer, F.; Bollada, P.; Phillips, T., A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics, Comput Meth Appl Mechan Eng, 198, 41, 3400-3410, (2009) · Zbl 1230.76046
[388] Maciá, F.; Antuono, M.; González, L. M.; Colagrossi, A., Theoretical analysis of the no-slip boundary condition enforcement in sph methods, Progress Theor Phys, 125, 6, 1091-1121, (2011) · Zbl 1287.76185
[389] Yildiz, M.; Rook, R. A.; Suleman, A., Sph with the multiple boundary tangent method, Int J Numer Methods Eng, 77, 10, 1416-1438, (2009) · Zbl 1156.76427
[390] Amicarelli, A.; Agate, G.; Guandalini, R., A 3d fully Lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements, Int J Numer Meth Eng, 95, 5, 419-450, (2013) · Zbl 1353.76059
[391] Khorasanizade, S.; Sousa, J., An innovative open boundary treatment for incompressible sph, Int J Numerical Methods in Fluids, 80, 3, 161-180, (2016)
[392] Colagrossi, A.; Antuono, M.; Souto-Iglesias, A.; Le Touzé, D., Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows, Phys Rev E, 84, 2, 026705, (2011)
[393] Attaway, S.; Heinstein, M.; Swegle, J., Coupling of smooth particle hydrodynamics with the finite element method, Nuclear Eng Des, 150, 2, 199-205, (1994)
[394] Fourey, G.; Oger, G.; Le Touzé, D.; Alessandrini, B., Violent fluid-structure interaction simulations using a coupled sph/FEM method, IOP conference series: materials science and engineering, 10, 012041, (2010), IOP Publishing
[395] Yang, Q.; Jones, V.; McCue, L., Free-surface flow interactions with deformable structures using an sph-FEM model, Ocean Eng, 55, 136-147, (2012)
[396] Alimi, J.-M.; Serna, A.; Pastor, C.; Bernabeu, G., Smooth particle hydrodynamics: importance of correction terms in adaptive resolution algorithms, J Comput Phys, 192, 1, 157-174, (2003) · Zbl 1047.76576
[397] Wadsley, J.; Stadel, J.; Quinn, T., Gasoline: a flexible, parallel implementation of treesph, New Astronomy, 9, 2, 137-158, (2004)
[398] Ihmsen, M.; Akinci, N.; Becker, M.; Teschner, M., A parallel sph implementation on multi-core cpus, Computer graphics forum, 30, 99-112, (2011), Wiley Online Library
[399] Domínguez, J. M.; Crespo, A. J.; Gómez-Gesteira, M., Optimization strategies for cpu and gpu implementations of a smoothed particle hydrodynamics method, Comput Phys Commun, 184, 3, 617-627, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.