×

Computation of steady incompressible flows in unbounded domains. (English) Zbl 1390.76647

Summary: In this study we revisit the problem of computing steady Navier-Stokes flows in two-dimensional unbounded domains. Precise quantitative characterization of such flows in the high-Reynolds number limit remains an open problem of theoretical fluid dynamics. Following a review of key mathematical properties of such solutions related to the slow decay of the velocity field at large distances from the obstacle, we develop and carefully validate a spectrally-accurate computational approach which ensures the correct behavior of the solution at infinity. In the proposed method the numerical solution is defined on the entire unbounded domain without the need to truncate this domain to a finite box with some artificial boundary conditions prescribed at its boundaries. Since our approach relies on the streamfunction-vorticity formulation, the main complication is the presence of a discontinuity in the streamfunction field at infinity which is related to the slow decay of this field. We demonstrate how this difficulty can be overcome by reformulating the problem using a suitable background “skeleton” field expressed in terms of the corresponding Oseen flow combined with spectral filtering. The method is thoroughly validated for Reynolds numbers spanning two orders of magnitude with the results comparing favorably against known theoretical predictions and the data available in the literature.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

LAPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allen, D. N.D. G.; Southwell, R. V., Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Quart J Mech Appl Math, 8, 2, 129-145, (1955) · Zbl 0064.19802
[2] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J., LAPACK users’ guide, (1999), Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[3] Apelt, C. J., The steady flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 44, Aeronaut Res Counc Lond R& M, 3175, 1-28, (1961)
[4] Batchelor, G. K., A proposal concerning laminar wakes behind bluff bodies at large Reynolds number, J Fluid Mech, 1, 04, 388-398, (1956) · Zbl 0071.19901
[5] Bayliss, A.; Class, A.; Matkowsky, B. J., Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J Comput Phys, 116, 2, 380-383, (1995) · Zbl 0826.65014
[6] Bönisch, S.; Heuveline, V.; Wittwer, P., Adaptive boundary conditions for exterior flow problems, J Math Fluid Mech, 7, 1, 85-107, (2005) · Zbl 1072.76049
[7] Bönisch, S.; Heuveline, V.; Wittwer, P., Second order adaptive boundary conditions for exterior flow problems: non-symmetric stationary flows in two dimensions, J Math Fluid Mech, 10, 45-70, (2008) · Zbl 1162.76329
[8] Bönisch, S.; Heuveline, V.; Wittwer, P., Second order adaptive boundary conditions for exterior flow problems: non-symmetric stationary flows in two dimensions, J Math Fluid Mech, 10, 1, 45-70, (2008) · Zbl 1162.76329
[9] Boyd, J. B., Chebyshev and Fourier spectral methods, (2000), Dover
[10] Boyd, J. P., The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J Comput Phys, 45, 43-79, (1982) · Zbl 0488.65035
[11] Breuer, K. S.; Everson, R. M., On the errors incurred calculating derivatives using Chebyshev polynomials, J Comput Phys, 99, 1, 56-67, (1992) · Zbl 0747.65009
[12] Brodetsky, S., Discontinuous fluid motion past circular and elliptic cylinders, Proc Royal Soc Lond Ser A, 102, 718, 542-553, (1923) · JFM 49.0746.03
[13] Canuto, C.; Husaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods: evolution to complex geometries and applications to fluid dynamics, Scientific computation, (2007), Springer · Zbl 1121.76001
[14] Chernyshenko, S. I., The asymptotic form of the stationary separated circumfluence of a body at high Reynolds number, Prikl Matem Mekh, 52, 958-966, (1988) · Zbl 0711.76015
[15] Chernyshenko, S. I., Asymptotic theory of global separation, Appl Mech Rev, 51, 523-536, (1998)
[16] Chernyshenko, S. I.; Castro, I. P., High-Reynolds-number weakly stratified flow past an obstacle, J Fluid Mech, 317, 155-178, (1996) · Zbl 0877.76077
[17] Christov, C. I.; Marinovab, R. S.; Marinova, T. T., Does the stationary viscous flow around a circular cylinder exist for large Reynolds numbers? A numerical solution via variational imbedding, J Comput Appl Math, 226, 205-217, (2009) · Zbl 1417.76014
[18] D’Alessio SJD. Models for steady state flow past a cylinder. PhD thesis. University of Western Ontario; 1993.
[19] Dong, S.; Karniadakis, G.; Chryssostomidis, C., A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains, J Comput Phys, 261, 83-105, (2014) · Zbl 1349.76569
[20] Elcrat, A.; Fornberg, B.; Horn, M.; Miller, K., Some steady vortex flows past a circular cylinder, J Fluid Mech, 409, 13-27, (2000) · Zbl 0973.76015
[21] Finn, R., On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch Ration Mech Anal, 19, 363-406, (1965) · Zbl 0149.44606
[22] Finn, R.; Smith, D. R., On the linearized hydrodynamical equations in two dimensions, Arch Ration Mech Anal, 25, 1-25, (1967) · Zbl 0152.45001
[23] Finn, R.; Smith, D. R., On the stationary solutions of the Navier-Stokes equations in two dimensions, Arch Ration Mech Anal, 25, 26-39, (1967) · Zbl 0152.45002
[24] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J Fluid Mech, 98, 04, 819-855, (1980) · Zbl 0428.76032
[25] Fornberg, B., Steady viscous flow past a circular cylinder up to Reynolds number 600, J Comput Phys, 61, 2, 297-320, (1985) · Zbl 0576.76026
[26] Fornberg, B., Steady incompressible flow past a row of circular cylinders, J Fluid Mech, 225, 655-671, (1991) · Zbl 0722.76023
[27] Fornberg, B., Computing steady incompressible flows past blunt bodies - a historical overview, (Baines, M. J.; Morton, K. W., Numerical methods for fluid dynamics, vol. IV, (1993), Oxford Univ. Press), 115-134 · Zbl 0802.76066
[28] Forsythe, G. E.; Malcolm, M. A.; Moler, C. B., Computational methods for mathematical computations, (1976), Prentice-Hall
[29] Gajjar, J. S.B.; Azzam, N. A., Numerical solution of the Navier-Stokes equations for the flow in a cylinder cascade, J Fluid Mech, 520, 51-82, (2004) · Zbl 1065.76155
[30] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations, (Steady state problems, (2011), Springer) · Zbl 1245.35002
[31] Gautier, R.; Biau, D.; Lamballais, E., A reference solution of the flow over a circular cylinder at \(\mathit{Re} = 40\), Comput Fluids, 75, 103-111, (2013) · Zbl 1277.76067
[32] Grosch, C. E.; Orszag, S. A., Numerical solution of problems in unbounded regions: coordinate transforms, J Comput Phys, 25, 273-296, (1977) · Zbl 0403.65050
[33] Gustafsson J. Computational investigation of steady Navier-Stokes flows past a circular obstacle in two-dimensional unbounded domain. PhD thesis. McMaster University; 2013.
[34] Gustafsson, J.; Protas, B., On Oseen flows for large Reynolds numbers, Theor Comput Fluid Dynam, 27, 5, 665-680, (2013)
[35] Hamielec, A. E.; Raal, J. D., Numerical studies of viscous flow around circular cylinders, Phys Fluids, 12, 1, 11-17, (1969) · Zbl 0191.24802
[36] Imai, I., On the asymptotic behaviour of viscous fluid flow at a great distance from a cylindrical body, with special reference to filon’s paradox, Proc Roy Soc Lond Ser A Math Phys Sci, 208, 1095, 487-516, (1951) · Zbl 0043.19007
[37] Kawaguti, M., Numerical solution of the Navier-Stokes equations for the flow around a circular cylinder at Reynolds number 40, J Phys Soc Jpn, 8, 6, 747-757, (1953)
[38] Keller, H. B.; Takami, H., Numerical studies of viscous flow about cylinders, (Numerical solutions of nonlinear differential equations, (1966), Wiley) · Zbl 0173.18404
[39] Kelley, C. T., Solving nonlinear equations with newton’s method. fundamentals of algorithms, (2003), Society for Industrial and Applied Mathematics (SIAM) Philadelphia (PA) · Zbl 1031.65069
[40] Kirchhoff, G., Zur theorie freier flüssigkeitsstrahlen, J Für Reine Angew Math (Crelles J), 1869, 70, 289-298, (1869) · JFM 02.0730.02
[41] Kreiss, H.; Oliger, J., Stability of the Fourier method, SIAM J Numer Anal, 16, 3, 421-433, (1979) · Zbl 0419.65076
[42] Leray, J., Etude de diverses èquations intègrales non linèaires et de quelques problèmes que pose l’hydrodynamique, J Math Pures Appl, 12, 1-82, (1933) · Zbl 0006.16702
[43] Levi-Civita T. Scie e leggi di resistenza. Rendiconti del Circolo Matematico di Palermo; 1907. · JFM 38.0753.04
[44] Majda, A.; McDonough, J.; Osher, S., The Fourier method for nonsmooth initial data, Math Comput, 32, 1041-1081, (1978) · Zbl 0393.65039
[45] Nieuwstadt, F.; Keller, H., Viscous flow past circular cylinders, Comput Fluids, 1, 1, 59-71, (1973) · Zbl 0328.76022
[46] Peyret, R., Spectral methods for incompressible viscous flow, (2002), Springer · Zbl 1005.76001
[47] Protas, B., On calculation of hydrodynamic forces for steady flows in unbounded domains, J Fluids Struct, 27, 1455-1460, (2011)
[48] Sen, S.; Mittal, S.; Biswas, G., Steady separated flow past a circular cylinder at low Reynolds numbers, J Fluid Mech, 620, 89-119, (2009) · Zbl 1156.76381
[49] Sychev, V. V.; Sychev, A. I.R. V.V.; Korolev, G. L., Asymptotic theory of separated flows, (1998), Cambridge University Press · Zbl 0944.76003
[50] Takami, H.; Keller, H. B., Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder, Phys Fluids, 12, 51-56, (1969) · Zbl 0206.55004
[51] Thom, A., The flow past circular cylinders at low speeds, Proc Roy Soc Lond Ser A, 141, 845, 651-669, (1933) · JFM 59.0765.01
[52] Tomotika, S.; Aoi, T., The steady flow of viscous fluid past a sphere and circular cylinder at small Reynolds numbers, Q J Mech Appl Math, 3, 140-161, (1950) · Zbl 0040.40401
[53] Vandeven, H., Family of spectral filters for discontinuous problems, J Sci Comput, 6, 159-192, (1991) · Zbl 0752.35003
[54] Vargas GA. Spectral methods solution of the Navier-Stokes equations for steady viscous flows. PhD thesis. Wichita State University; 2009.
[55] Veysey, J.; Goldenfeld, N., Simple viscous flows: from boundary layers to the renormalization group, Rev Mod Phys, 79, 3, 883-927, (2007) · Zbl 1205.76078
[56] Zebib, A., Stability of viscous flow past a circular cylinder, J Eng Math, 21, 155-165, (1987) · Zbl 0638.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.