×

A high order finite difference solver for massively parallel simulations of stably stratified turbulent channel flows. (English) Zbl 1390.76572

Summary: Investigation of stably stratified turbulent flows in the atmosphere is challenging owing to its nonstationarity and heterogeneity, especially in very stable conditions. In recent years, numerical simulation has become a powerful tool to complement the understanding of fundamental characteristics of strongly stratified flows. Owing to its highly accurate representation of small-scale turbulence structures, direct numerical simulation (DNS) is shown to be the most effective numerical approach for strongly stratified flows. However, due to the limitation of the traditional parallel strategy, existing DNS studies on stratified channel flows are limited to relatively low Reynolds numbers. In order to make the DNS studies more relevant to the atmospheric boundary layer flows, in this paper, a high-order finite-difference DNS solver is developed for simulating stably stratified turbulent channel flows at relatively high Reynolds numbers. Utilizing the advanced two dimensional domain decomposition technique, the DNS solver is shown to be competent for petascale simulations with excellent scalability tested up to 32,768 CPU cores. Using this newly developed solver, two stably stratified open-channel simulations are conducted with the highest Reynolds number being approximately \(10^{5}\). The fundamental characteristics of strongly stratified turbulent flows, e.g., spatio-temporal variation of global intermittency, are compared with those previously reported at relatively low Reynolds numbers, and their similarities and discrepancies are also discussed. In addition, the DNS-based Monin-Obukhov similarity relationships are compared with those proposed based on observational data to evaluate their relevance to atmospheric flows. The source code and the simulation results are available at http://sites.google.com/site/scdnscode/.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D50 Stratification effects in viscous fluids
86A10 Meteorology and atmospheric physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stull, R. B., An introduction to boundary layer meteorology, vol. 13, (1988), Springer · Zbl 0752.76001
[2] Sorbjan, Z., Structure of the atmospheric boundary layer, (1989), Prentice Hall
[3] Garratt, J. R., The atmospheric boundary layer, (1994), Cambridge University Press
[4] Wyngaard, J. C., Turbulence in the atmosphere, (2010), Cambridge University Press · Zbl 1380.86001
[5] Mahrt, L., Stably stratified atmospheric boundary layers, Annu Rev Fluid Mech, 46, 23-45, (2014) · Zbl 1297.76077
[6] Storm, B.; Dudhia, J.; Basu, S.; Swift, A.; Giammanco, I., Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy, Wind Energy, 12, 1, 81-90, (2008)
[7] Nunalee, C. G.; Basu, S., Mesoscale modeling of coastal low-level jets: implications for offshore wind resource estimation, Wind Energy, 17, 1199-1216, (2013)
[8] Salmond, J. A.; McKendry, I. G., A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality, Prog Phys Geogr, 29, 2, 171-188, (2005)
[9] Armenio, V.; Sarkar, S., Environmental stratified flows, (2005), Springer · Zbl 1092.76003
[10] Fernando, H. J.S., Handbook of environmental fluid dynamics: overview and fundamentals, (2012), CRC Press
[11] Pielke, R. A.; Pearce, R. P., Mesoscale modeling of the atmosphere, vol. 25, (1994), Springer
[12] Flores, O.; Riley, J. J., Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation, Bound-Layer Meteorol, 139, 2, 241-259, (2011)
[13] Nieuwstadt, F. T.M., Direct numerical simulation of stable channel flow at large stability, Bound-Layer Meteorol, 116, 2, 277-299, (2005)
[14] Donda, J. M.M.; van Hooijdonk, I. G.S.; Moene, A. F.; Jonker, H. J.J.; van Heijst, G. J.F.; Clercx, H. J.H., Collapse of turbulence in stably stratified channel flow: a transient phenomenon, Q J R Meteorol Soc, 141, 2137-2147, (2015)
[15] Iida, O.; Kasagi, N.; Nagano, Y., Direct numerical simulation of turbulent channel flow under stable density stratification, Int J Heat Mass Transf, 45, 8, 1693-1703, (2002) · Zbl 1121.76347
[16] Garg, R. P.; Ferziger, J. H.; Monismith, S. G.; Koseff, J. R., Stably stratified turbulent channel flows. I. stratification regimes and turbulence suppression mechanism, Phys Fluids, 12, 2569-2594, (2000) · Zbl 1184.76175
[17] García-Villalba, M.; del Álamo, J. C., Turbulence modification by stable stratification in channel flow, Phys Fluids, 23, p.045104, (2011)
[18] Shah, S. K.; Bou-Zeid, E., Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics, J Fluid Mech, 760, 494-539, (2014)
[19] Barnard, J. C., Intermittent turbulence in the very stable Ekman layer, (2000), [Ph.D. thesis]
[20] Brethouwer, G.; Duguet, Y.; Schlatter, P., Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces, J Fluid Mech, 704, 137-172, (2012) · Zbl 1246.76028
[21] Ansorge, C.; Mellado, J. P., Global intermittency and collapsing turbulence in the stratified planetary boundary layer, Bound-Layer Meteorol, 1-28, (2014)
[22] He, P.; Basu, S., Direct numerical simulation of intermittent turbulence under stably stratified conditions, Nonlinear Process Geophys, 22, 447-471, (2015)
[23] van de Wiel, B. J.H.; Moene, A. F.; de Ronde, W. H.; Jonker, H. J.J., Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts, Bound-Layer Meteorol, 128, 1, 103-116, (2008)
[24] He, P.; Basu, S., Development of similarity relationships for energy dissipation rate and temperature structure parameter in stably stratified flows: a direct numerical simulation approach, Environ Fluid Mech, (2015)
[25] Townsend, A. A., The structure of turbulent shear flow, (1980), Cambridge University Press · Zbl 0435.76033
[26] Sorbjan, Z.; Grachev, A. A., An evaluation of the flux-gradient relationship in the stable boundary layer, Bound-Layer Meteorol, 135, 3, 385-405, (2010)
[27] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods in fluid dynamics, (1988), Springer · Zbl 0658.76001
[28] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu Rev Fluid Mech, 30, 1, 539-578, (1998)
[29] Zang, Y.; Street, R. L.; Koseff, J. R., A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates, J Comput Phys, 114, 1, 18-33, (1994) · Zbl 0809.76069
[30] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math Comput, 22, 104, 745-762, (1968) · Zbl 0198.50103
[31] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 2, 308-323, (1985) · Zbl 0582.76038
[32] Laizet, S.; Li, N., Incompact3d: a powerful tool to tackle turbulence problems with up to O(10^{5}) computational cores, Int J Numer Methods Fluids, 67, 11, 1735-1757, (2011) · Zbl 1419.76481
[33] Vreman, A. W.; Kuerten, J. G.M., Comparison of direct numerical simulation databases of turbulent channel flow at re_{τ} = 180, Phys Fluids, 26, p.015102, (2014) · Zbl 1187.76284
[34] Top500 Lists. Top500 lists November 2014.
[35] Laizet, S.; Vassilicos, J. C., Direct numerical simulation of fractal-generated turbulence, Direct and large-eddy simulation VII, 17-23, (2010), Springer
[36] Lee, M.; Moser, R. D., Direct numerical simulation of turbulent channel flow up to re_{τ} = 5200, J Fluid Mech, 774, 395-415, (2015)
[37] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to re_{τ}= 590, Phys Fluids, 11, 4, 943-945, (1999) · Zbl 1147.76463
[38] Rosenberg, D.; Pouquet, A.; Marino, R.; Mininni, P. D., Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations, Phys Fluids, 27, 5, 055105, (2015)
[39] de Bruyn Kops, S. M., Classical scaling and intermittency in strongly stratified Boussinesq turbulence, J Fluid Mech, 775, 436-463, (2015)
[40] Orlandi, P., Fluid flow phenomena: a numerical toolkit, (2000), Springer Science & Business Media
[41] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 8, 12, 2182-2189, (1965) · Zbl 1180.76043
[42] Kampanis, N. A.; Ekaterinaris, J. A., A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations, J Comput Phys, 215, 2, 589-613, (2006) · Zbl 1173.76375
[43] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J Comput Phys, 143, 1, 90-124, (1998) · Zbl 0932.76054
[44] Horiuti, K.; Itami, T., Truncation error analysis of the rotational form for the convective terms in the Navier-Stokes equation, J Comput Phys, 145, 2, 671-692, (1998) · Zbl 0926.76077
[45] Pekurovsky, D., P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions, SIAM J Sci Comput, 34, 4, C192-C209, (2012) · Zbl 1253.65205
[46] Li, N.; Laizet, S., 2DECOMP&FFT-a highly scalable 2D decomposition library and FFT interface, Proceedings of cray user group 2010 conference, Edinburgh, (2010)
[47] FFTW. FFTW documentation, 2014; URL http://www.fftw.org/fftw3_doc/.
[48] Lee, M.; Malaya, N.; Moser, R. D., Petascale direct numerical simulation of turbulent channel flow on up to 786k cores, Proceedings of the international conference on high performance computing, networking, storage and analysis, 61, (2013), ACM
[49] Armenio, V.; Sarkar, S., An investigation of stably stratified turbulent channel flow using large-eddy simulation, J Fluid Mech, 459, 1-42, (2002) · Zbl 1022.76027
[50] Gage, K. S.; Reid, W. H., The stability of thermally stratified plane Poiseuille flow, J Fluid Mech, 33, 21-32, (1968) · Zbl 0155.55702
[51] Nakamura, R.; Mahrt, L., A study of intermittent turbulence with CASES-99 tower measurements, Bound-Layer Meteorol, 114, 2, 367-387, (2005)
[52] Holtslag, B., Preface: GEWEX atmospheric boundary-layer study (GABLS) on stable boundary layers, Bound-Layer Meteorol, 118, 2, 243-246, (2006)
[53] Cullen, N. J.; Steffen, K.; Blanken, P. D., Nonstationarity of turbulent heat fluxes at summit, greenland, Bound-Layer Meteorol, 122, 2, 439-455, (2007)
[54] Sun, J.; Burns, S. P.; Lenschow, D. H.; Banta, R.; Newsom, R.; Coulter, R., Intermittent turbulence associated with a density current passage in the stable boundary layer, Bound-Layer Meteorol, 105, 2, 199-219, (2002)
[55] Sun, J.; Lenschow, D. H.; Burns, S. P.; Banta, R. M.; Newsom, R. K.; Coulter, R., Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers, Bound-Layer Meteorol, 110, 2, 255-279, (2004)
[56] Sun, J.; Mahrt, L.; Banta, R. M.; Pichugina, Y. L., Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99, J Atmos Sci, 69, 1, 338-351, (2012)
[57] Coulter, R. L.; Doran, J. C., Spatial and temporal occurrences of intermittent turbulence during CASES-99, Bound-Layer Meteorol, 105, 2, 329-349, (2002)
[58] van de Wiel, B. J.H.; Ronda, R. J.; Moene, A. F.; de Bruin, H. A.R.; Holtslag, A. A.M., Intermittent turbulence and oscillations in the stable boundary layer over land. part I: a bulk model, J Atmos Sci, 59, 5, 942-958, (2002)
[59] van de Wiel, B. J.H.; Moene, A. F.; Ronda, R. J.; de Bruin, H. A.R.; Holtslag, A. A.M., Intermittent turbulence and oscillations in the stable boundary layer over land. part II: a system dynamics approach, J Atmos Sci, 59, 17, 2567-2581, (2002)
[60] van de Wiel, B. J.H.; Moene, A. F.; Hartogensis, O. K.; de Bruin, H. A.R.; Holtslag, A. A.M., Intermittent turbulence in the stable boundary layer over land. part III: a classification for observations during CASES-99, J Atmos Sci, 60, 20, 2509-2522, (2003)
[61] Dyer, A., A review of flux-profile relationships, Bound-Layer Meteorol, 7, 3, 363-372, (1974)
[62] Duynkerke, P. G., Radiation fog: a comparison of model simulation with detailed observations, Mon Weather Rev, 119, 2, 324-341, (1991)
[63] Businger, J. A.; Wyngaard, J. C.; Izumi, Y.; Bradley, E. F., Flux-profile relationships in the atmospheric surface layer, J Atmos Sci, 28, 2, 181-189, (1971)
[64] Beljaars, A.; Holtslag, A., Flux parameterization over land surfaces for atmospheric models, J Appl Meteorol, 30, 3, 327-341, (1991)
[65] Nieuwstadt, F. T., The turbulent structure of the stable, nocturnal boundary layer, J Atmos Sci, 41, 14, 2202-2216, (1984)
[66] Sorbjan, Z., Gradient-based scales and similarity laws in the stable boundary layer, Q J R Meteorol Soc, 136, 650, 1243-1254, (2010)
[67] Kasagi, N.; Tomita, Y.; Kuroda, A., Direct numerical simulation of passive scalar field in a turbulent channel flow, J Heat Transf, 114, 598-606, (1992)
[68] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J Comput Phys, 228, 16, 5989-6015, (2009) · Zbl 1185.76823
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.