zbMATH — the first resource for mathematics

Towards industrial large eddy simulation using the FR/CPR method. (English) Zbl 1390.76236
Summary: Large eddy simulation (LES) has been shown to be very promising in computing vortex-dominated turbulent flows. The proliferation of high-order methods capable of handling complex geometries has significantly reduced the cost of such simulations to achieve a specified level of accuracy comparing with 1st or 2nd order methods. In this article, we examine key factors affecting the quality of LES solutions, and outline our progress in applying one particular high-order method, the flux reconstruction (FR) or correction procedure via reconstruction (CPR) method in LES. The progress has enabled LES of a benchmark flow over a turbine blade at a Reynolds number of nearly 600,000 with p-independent mean surface skin friction and heat transfer, which agree well with experimental data. Pacing items in the use of LES in the design process are given.

76F65 Direct numerical and large eddy simulation of turbulence
Gmsh; meshCurve
Full Text: DOI
[1] Bardina, J.; Ferziger, J. H.; Reynolds, W. C., Improved subgrid scale models for large eddy simulation, Am Inst Aeronaut Astronaut, 80-1357, (1980)
[2] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (Cockburn, B.; Karniadakis, G.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation, and Application. Lecture Notes in Computational Science and Engineering, (2000), Springer), 77-88 · Zbl 0991.76039
[3] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer Methods Fluids, 76, 8, 522-548, (2014)
[4] Bhaskaran R., Wood T.H., Paliath U., Breeze-Stringfellow A. Towards large eddy simulation of a 3D transonic fan. 46th AIAA Fluid Dynamics Conference, AIAA Aviation Forum and Exposition, Washington D.C., 2016-3816.
[5] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insight into large eddy simulation, Fluid Dyn Res, 10, 199-228, (1992)
[6] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin methods. theory, computation and applications, lecture notes in computational science and engineering, (2000), Springer-Verlag Berlin
[7] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys Fluids A, 3, 1760-1765, (1991) · Zbl 0825.76334
[8] Geuzaine, C.; Remacle, J. F., Gmsh: a 3-D finite element mesh generator with built-in pre-and-post-processing facilities, Int J Numer Methods Eng, 79, 11, 1309-1331, (2009) · Zbl 1176.74181
[9] Gopalan, H.; Heinz, S., A unified RANS-LES model: computational development, accuracy and cost, J Comput Phys, 249, 249-274, (2013)
[10] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math Comput, 67, 73-85, (1998) · Zbl 0897.65058
[11] Grinstein, F.; Margolin, L.; Rider, W., Implicit large eddy simulation, (2007), Cambridge University Press · Zbl 1135.76001
[12] Haga, T.; Gao, H.; Wang, Z. J., A high-order unifying discontinuous formulation for the Navier-Stokes equations on 3D mixed grids, Math Model Nat Phenom, 6, 3, 28-56, (2011) · Zbl 1239.76044
[13] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA Pap, (2007), 4079
[14] Huynh, H. T.; Wang, Z. J.; Vincent, P. E., High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput Fluids, 98, 209-220, (2014) · Zbl 1390.65123
[15] Ims, J.; Duan, Z.; Wang, Z. J., Meshcurve: an automated low-order to high-order mesh generator, AIAA, (2015), 2293
[16] Jiao, X.; Wang, D., Reconstructing high-order surfaces for meshing, Eng Comput, 28, 4, 361-373, (2012)
[17] Karman, S. L.; Erwin, J. T.; Glasby, R. S.; Stefanski, D. L., High-order mesh curving using WCN optimization, AIAA, (2016), 3178
[18] Kopriva J.E., Laskowski G.M., Sheikhi M.R.H. Hybrid LES of a high pressure turbine nozzle/blade interaction. DLES-10, Limassol, Cyprus, 2015.
[19] Kopriva J.E., Laskowski G.M., Shiekhi M.R.H. Computational assessment of inlet turbulence on boundary layer development and momentum/thermal wakes for high pressure turbine nozzle and blade. IMECE2014-38620, 2014.
[20] Laskowski, G. M.; Kopriva, J.; Michelassi, V.; Shankaran, S.; Paliath, U.; Bhaskaran, R., Future directions of high fidelity CFD for aerothermal turbomachinery research, analysis and design, AIAA, (2016), 3322
[21] Li, Y.; Wang, Z. J., A priori and a posteriori evaluations of sub-grid scale models for the Burgers’ equation, Comput Fluids, 139, 92-104, (2016) · Zbl 1390.76185
[22] Li, Y.; Wang, Z. J., Recent progress in developing a convergent and accuracy preserving limiter for the FR/CPR method, (55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (2017), AIAA), 0756)
[23] Liu, Y.; Vinokur, M.; Wang, Z. J., Discontinuous spectral difference method for conservation laws on unstructured grids, J Comput Phys, 216, 780-801, (2006) · Zbl 1097.65089
[24] Lodato, G.; Castonguay, P.; Jameson, A., Structural wall-modeled LES using a high-order spectral difference scheme for unstructured meshes, Flow Turbulence Combust, 92, 1-2, 579-606, (2014)
[25] Lu Y., Liu K., Dawes W.N. Flow simulation system based on high order space-time extension of flux reconstruction method, 53rd AIAA aerospace sciences meeting, AIAA SciTech forum, (AIAA 2015-0833).
[26] Paliath, U.; Premasuthan, S., Large eddy simulation for jet installation effects, (19th AIAA Aeroacoustics Conference, (2013), AIAA), 2137
[27] Paliath, U.; Shen, H.; Avancha, R.; Shieh, C., Large eddy simulation for jets from chevron and dual flow nozzle, (17th AIAA Aeroacoustics Conference, (2011), AIAA), 2881
[28] Park, J. S.; You, H.; Kim, C., Higher-order multi-dimensional limiting process for DG and FR/CPR methods on tetrahedral meshes, Comput Fluids, (2017), in press · Zbl 1390.76346
[29] Persson, P. L.; Peraire, J., Curved mesh generation and mesh refinement using Lagrangian solid mechanics, AIAA, (2009), 949
[30] Piomelli, U.; Balaras, E., Wall-layer models for large eddy simulations, Ann Rev Fluid Mech, 34, 1, 349-374, (2002) · Zbl 1006.76041
[31] Pope, S. B., Ten questions concerning the large eddy simulation of turbulent flows, New J Phys, 6, 1, 35, (2004)
[32] Sherwin, S. J.; Peiro, J., Mesh generation in curvilinear domains using high-order elements, Int J Numer Methods Eng, 53, 1, 207-223, (2000) · Zbl 1082.74553
[33] Smagorinsky, J., General circulation experiments with the primitive equations, I Basic Exp Mon Weather Rev, 91, 3, 99-164, (1963)
[34] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, AIAA J, (1992), 94
[35] Spalart, P. R.; Deck, S.; Shur, M. L.; Squires, K. D.; MKh, S.; Travin, A., A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theor Comput Fluid Dyn, 20, 3, 181-195, (2006) · Zbl 1112.76370
[36] Stadtm├╝ller P. Investigation of wake-induced transition on the LP turbine cascade T106A-EIZ. DFG-Verbundprojekt Fo. 2001;136(11).
[37] Tam, C. K.W., Computational aeroacoustics: issues and methods, AIAA J, 33, 10, 1788-1796, (1995) · Zbl 0856.76080
[38] Uranga, A.; Persson, P. O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, J Numer Meth Eng, 87, 232-261, (2011) · Zbl 1242.76085
[39] Vincent, P. E.; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J Sci Comput, 47, 1, 50-72, (2011) · Zbl 1433.76094
[40] Vermeire, B. C.; Nadarajah, S.; Tucker, P. G., Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme, J Numer Meth Fluids, 82, 231-260, (2016)
[41] Vermeire, B. C.; Witherden, F. D.; Vincent, P. E., On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-standard tools, J Comput Phys, 334, 497-521, (2017)
[42] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J Comput Phys, 181, 1, 155-185, (2002) · Zbl 1008.65062
[43] Wang, M.; Moin, P., Dynamic wall modeling for large-eddy simulation of complex turbulent flows, Phys Fluids, 14, 7, 2043-2051, (2002) · Zbl 1185.76386
[44] Wang, Z. J., High-order methods on unstructured grids for Navier-Stokes equations, J Prog Aerosp Sci, 43, 1, 1-41, (2007)
[45] Wang, Z. J., A perspective on high-order methods in computational fluid dynamics, Sci Chi Phys Mech Astron, 59, 1, 1-6, (2016)
[46] Wang, Z. J.; Fidkowski, K. J.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A., High-order CFD methods: current status and perspective, Int J Numer Methods Fluids, 72, 8, 811-845, (2013)
[47] Wang, Z. J.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J Comput Phys, 228, 21, 8161-8186, (2009) · Zbl 1173.65343
[48] Yu, M. L.; Wang, Z. J.; Liu, Y., On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods, J Comput Phys, 259, 70-95, (2014) · Zbl 1349.65591
[49] Zhu, H.; Fu, S.; Shi, L.; Wang, Z. J., Implicit large-eddy simulation for the high-order flux reconstruction method, AIAA J, 54, 9, 2721-2733, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.