×

Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number. (English) Zbl 1390.76056

Summary: In this paper, we present a partitioned iterative and a dynamic subgrid-scale (SGS) scheme to simulate flow-induced vibration of freely vibrating structures in a turbulent flow. The hybrid partitioned scheme relies on the combined interface boundary conditions and non-linear interface force corrections to stabilize the variational coupled system based on the filtered Navier-Stokes and rigid-body dynamics. The iterative interface corrections provide the force equilibrium with arbitrary accuracy while maintaining the velocity continuity condition along the fluid-structure interface. We show that our second-order scheme is stable for both VIV and galloping instabilities found in a freely vibrating square cylinder with strong added-mass effects for mass ratio (solid mass to displaced fluid mass) ranging from \(m^{*}\in [0.1, 10]\). We validate the dynamic subgrid-scale scheme for the benchmark problem of the three-dimensional (3D) flow past a square cylinder at moderate Reynolds number. We assess the response characteristics of freely vibrating square cylinder with the recent experimental data at zero and \(45^{o}\) incidence. We demonstrate the SGS-based large-eddy simulation solver for full-scale multicolumn semi-submersible floater subjected to flow-induced motions at subcritical Reynolds number \(\mathrm{Re} = 20,000\) based on the diameter of column section. The transverse amplitude and the Strouhal number of the floater are validated against the experimental data.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76F65 Direct numerical and large eddy simulation of turbulence

Software:

Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blevins, R. D., Flow-Induced Vibration, (1990), Van Nostrand Reinhold New York
[2] Paidoussis, M.; Price, S.; de Langre, E., Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, (2011), Cambridge University Press UK · Zbl 1220.74007
[3] Veritas, D. N., Riser fatigue, (2010), DNV-RP-F204
[4] Bearman, P. W.; Gartshore, I. S.; Maull, D. J., Experiments on flow-induced vibration of a square-section cylinder, J Fluids Struct, 1, 19-34, (1987)
[5] Zhao, J.; Jacono, D.; Sheridan, J. L., The effect of incidence angle variation of a square cylinder on its dynamic response and wake states, 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, (2010)
[6] Amandolese, X.; Heḿon, P., Vortex-induced vibration of square cylinder in wind tunnel, Comptes Rendus Mećanique, 338, 12-17, (2010)
[7] Sen, S.; Mittal, S., Free vibration of a square cylinder at low Reynolds numbers, J Fluids Struct, 27, 875-884, (2011)
[8] He, T.; Zhou, D.; Bao, Y., Combined interface boundary condition method for fluid-rigid body interaction, Comp Meth Appl Mech Eng, 81-102, (2012) · Zbl 1253.74034
[9] Joly, A.; Etienne, S.; Pelletier, D., Galloping of square cylinders in cross-flow at low Reynolds numbers, J Fluids Struct, 28, 232-243, (2012)
[10] Zhao, M.; Cheng, L.; Zhou, T., Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number, Phys Fluids, 25, 023603(1)-0236032(4), (2013)
[11] Zhao, M.; Cheng, L.; Zhou, T., Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number, Phys Fluids, 25, 023603, (2013)
[12] Jaiman, R.; Pillalamarri, N.; Guan, M., A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow, Comp Meth Appl Mech Engrg, 301, 187-215, (2016)
[13] Jaiman, R.; Geubelle, P.; Loth, E.; Jiao, X., Combined interface boundary conditions method for unsteady fluid-structure interaction, Comp Meth Appl Mech Eng, 200, 27-39, (2011) · Zbl 1225.74091
[14] Jaiman, R.; Geubelle, P.; Loth, E.; Jiao, X., Transient fluid-structure interaction with non-matching spatial and temporal discretizations, Comput Fluids, 50, 120-135, (2011) · Zbl 1271.76242
[15] Jaiman, R.; Sen, S.; Gurugubelli, P., A fully implicit combined field scheme for freely vibrating square cylinders with sharp and rounded corners, Comput Fluids, 112, 1-18, (2015) · Zbl 1390.76324
[16] Hron, J.; Turek, S., A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics, (2006), Springer · Zbl 1323.74086
[17] Bazilevs, Y.; Calo, V.; Hughes, T.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015
[18] Gee, M. W; Küttler, U.; Wall, W. A, Truly monolithic algebraic multigrid for fluid-structure interaction, Int J Numer Meth Eng, 85, 987-1016, (2011) · Zbl 1217.74121
[19] Liu, J.; Jaiman, R. K.; Gurugubelli, P. S., A stable second-order scheme for fluid-structure interaction with strong added-mass effects, J Comput Phy, 270, 687-710, (2014) · Zbl 1349.76236
[20] Jaiman, R., Advances in ALE based fluid-structure interaction modeling for offshore engineering applications, 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, (2012)
[21] Matthies, H. G.; Niekamp, R.; Steindorf, J., Algorithms for strong coupling procedures, Comp Meth Appl Mech Eng, 195, 2028-2049, (2006) · Zbl 1142.74050
[22] Forster, C.; Wall, W.; Ramm, E., Artificial added mass instabilities in sequential staged coupling of nonlinear structures and incompressible viscous flows, Comp Meth Appl Mech Eng, 196, 1278-1293, (2007) · Zbl 1173.74418
[23] Dettmer, W.; Perić, A computational framework for fluid-rigid body intreraction: finite element formulation and applications, Comp Meth Appl Mech Engrg, 195, 1633-1666, (2006) · Zbl 1123.76029
[24] Causin, P.; Gerbeau, J. F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comp Meth Appl Mech Eng, 194, 4506-4527, (2005) · Zbl 1101.74027
[25] Dettmer, W.; Perić, D., A fully implicit computational strategy for strongly coupled fluid-solid interaction, Archives of Comput Meth Eng, 14, 205-247, (2007) · Zbl 1160.74044
[26] Heil, M.; Hazel, A.; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Computational Mechanics, 43, 91-101, (2008) · Zbl 1309.76126
[27] Sternel, D.; Schäfer, M.; M., H.; Yigit, S., Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach, Computat Mech, 43, 103-113, (2008) · Zbl 1234.74053
[28] Badia, S.; Quaini, A.; Quarteroni, A., Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comp Meth Appl Mech Eng, 197, 4216-4232, (2008) · Zbl 1194.74058
[29] Kassiotis, C.; Ibrahimbegovic, A.; Niekamp, R.; Matthies, H., Nonlinear fluid-structure interaction problem. part I: implicit partitioned algorithm, nonlinear stability proof and validation examples, Comput Mech, 47, 305-323, (2011) · Zbl 1398.74084
[30] Joosten, M.; Dettmer, W. G; Perić, D., Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction, Int J Numer Meth Eng, 78, 757-778, (2009) · Zbl 1183.74347
[31] Jaiman, R. K.; Parmar, M. K.; Gurugubelli, P. S., Added mass and aeroelastic stability of a flexible plate interacting with mean flow in a confined channel, J Appl Mech, 81, (2013)
[32] Jaiman, R.; Shakib, F.; Oakley, O.; Constantinides, Y., Fully coupled fluid-structure interaction for offshore applications, ASME Offshore Mechanics and Arctic Engineering OMAE09-79804 CP, (2009)
[33] Sagaut, P., Large eddy simulation for incompressible flows, Scientific Computing, (2006), Springer
[34] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W., A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, 3, 1760-1765, (1991) · Zbl 0825.76334
[35] Jaiman, R. K.; Geubelle, P.; Loth, E.; Jiao, X., Combined interface condition method for unsteady fluid-structure interaction, Comp Meth Appl Mech Eng, 200, 27-39, (2011) · Zbl 1225.74091
[36] Waals, O.; Phadke, A.; Bultema, S., Flow-induced motions of multi-column floaters, ASME Offshore Mechanics and Arctic Engineering OMAE07-29539 CP, (2007)
[37] Hughes, T. J.R.; Liu, W.; Zimmerman, T., Lagrangian-Eulerian finite element formulation for incompressible visous flows, Comp Meth Appl Mech Eng, 29, 329-349, (1981) · Zbl 0482.76039
[38] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, 192, 4195-4215, (1983) · Zbl 1181.74156
[39] Kuhl, E.; Askes, H.; Steinmann, P., An ALE formulation based on spatial and material settings of continuum mechanics. part 1: generic hyperelastic formulation, Comp Meth Appl Mech Eng, 193, 4207-4222, (2004) · Zbl 1068.74078
[40] Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method, (1987), Cambridge University Press
[41] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J Appl Mech, 60, 370-375, (1993) · Zbl 0775.73337
[42] Hughes, T. J.R.; Wells, G., Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations, Comp Meth Appl Mech Eng, 194, 1141-1159, (2005) · Zbl 1091.76035
[43] Hsu, M.; Bazilevs, Y.; Calo, V.; Tezduyar, T.; Hughes, T. J.R., Improving stability of multiscale formulations of fluid flow at small time steps, Comp Meth Appl Mech Eng, 199, 828-840, (2010) · Zbl 1406.76028
[44] Akkerman, I.; Bazilevs, Y.; Benson, D.; Farthing, M.; Kees, C., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, (2012)
[45] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comp Meth Appl Mech Eng, 32, 199-259, (1982) · Zbl 0497.76041
[46] Shakib, F.; Hughes, T.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comp Meth Appl Mech Eng, 89, 141-219, (1991)
[47] Tezduyar, T.; Mittal, S.; Ray, S.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order interpolation velocity-pressure elements, Comp Meth Appl Mech Eng, 95, 221-242, (1992) · Zbl 0756.76048
[48] Franca, L.; Frey, S., Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comp Meth Appl Mech Eng, 99, 209-233, (1992) · Zbl 0765.76048
[49] Harari, I.; Hughes, T., What are C and h ?: inequalities for the analysis and design of finite element methods, Comp Meth Appl Mech Engrg, 97, 157-192, (1992) · Zbl 0764.73083
[50] Bazilevs, Y.; Takizawa, K.; Tezduar, T., Computational fluid-structure interaction: methods and aplications, (2013), Wiley
[51] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comp Meth Appl Mech Eng, 59, 85-99, (1986) · Zbl 0622.76077
[52] Tezduyar, T. E., Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput Fluids, 36, 191-206, (2007) · Zbl 1177.76202
[53] Jaiman, R.; Pillalamarri, N.; Guan, M., A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow, Comp Meth Appl Mech Eng, 301, 187-215, (2016)
[54] He, T.; Zhou, D.; Bao, Y., Combined interface boundary condition method for fluid-rigid body interaction, Comp Meth Appl Mech Eng, 81-102, (2012) · Zbl 1253.74034
[55] He, T., A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder, Int J Comput Meth, 12, 1550012, (2015) · Zbl 1359.76080
[56] He, T.; Zhou, D.; Han, Z.; Tu, J.; Ma, J., Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method, Int J Comput Fluid Dyn, 1-29, (2014)
[57] Jaiman, R.; Jiao, X.; Geubelle, X.; Loth, E., Conservative load transfer along curved fluid-solid interface with nonmatching meshes, J Comput Phys, 218, 372-397, (2006) · Zbl 1158.76405
[58] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems, (1986), SIAM J Sci Statis Comput 7
[59] Aitken, A., Studies in practical mathematics: the evaluation of latent roots and latent vectors of a matrix, Proc R Soc Edinburgh, 57-269, (1937) · JFM 63.1132.02
[60] Buoso, D.; Karapiperi, A.; Pozza, S., Generalizations of aitken’s process for a certain class of sequences, Appl Numer Math, 90, 38-54, (2015) · Zbl 1326.65011
[61] Irons, B.; Shrive, N., Numerical Methods in Engineering and Applied Science, (1987), John Wiley and Sons · Zbl 0604.65001
[62] Sidi, A., Practical Extrapolation Methods: Theory and Applications, (2003), Cambridge University Press · Zbl 1041.65001
[63] Gatski, T.; Speziale, C., On explicit algebraic stress models for complex turbulent flows, J Fluid Mech, 254, 59, (1993) · Zbl 0781.76052
[64] Wang, B. C.; Bergstrom, D. J., A dynamic nonlinear subgrid-scale stress model, Phys Fluids, 17, 035109, (2005) · Zbl 1187.76544
[65] Smagorinsky, J., General circulation experiments with the primitive equations, i. the basic experiment, Monthly Weather Rev., 91, 99-164, (1963)
[66] Lilly, D., A proposed modification of the Germano subgrid-scale closure method, Phys Fluids, 4, 633-635, (1992)
[67] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications · Zbl 1191.74002
[68] Balaras, E.; Benocci, C.; Piomelli, U., Two layer approximate boundary conditions for large-eddy simulations, AIAA J, 34, (1996) · Zbl 0900.76319
[69] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu Rev Fluid Mech, 34, 349, (2002) · Zbl 1006.76041
[70] Hughes, T. J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comp Meth Appl Mech Eng, 387-401, (1995) · Zbl 0866.76044
[71] Hughes, T. J.R.; Mazzei, L.; Oberai, A. A.; Wray, A. A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys Fluids, 13, 505-512, (2001) · Zbl 1184.76236
[72] Vreman, A., The filtering analog of the variational multiscale method in large-eddy simulation, Phys Fluids, 15, L61, (2003) · Zbl 1186.76552
[73] Masud, A.; Calderer, R., A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields, Comp Meth Appl Mech Eng, 200, 2577-2593, (2011) · Zbl 1230.76029
[74] Bazilevs, Y.; Caloa, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzic, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comp Meth Appl Mech Eng, 173-201, (2007) · Zbl 1169.76352
[75] Sarpkaya, T., A critical review of the intrinsic nature of vortex-induced vibrations, J Fluids Struct, 19, 389-447, (2004)
[76] Lyn, D. A.; Einav, S.; Rodi, W.; Park, J.-H., A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder, J Fluid Mech, 304, 285-319, (1995)
[77] Verstappen, R.; Veldman, A., Direct numerical simulation of turbulence at lower costs, J Eng Math, 32, 2-3, 143-159, (1997) · Zbl 0911.76072
[78] Rodi, W.; Ferziger, J.; Breuer, M.; Pourquie, M., Status of large eddy simulation: results of a workshop, Trans Am Society of Mech Eng J Fluids Eng, 119, 248-262, (1997)
[79] Wang, G.; Vanka, S., Large-eddy simulations of high Reynolds number turbulent flow over a square cylinder, Rep No CFD, (1996), Dept of Mechanical and Industrial Engineering
[80] Bouris, D.; Bergeles, G., 2dles of vortex shedding from a square cylinder, J Wind Eng Industrial Aerodyn, 80, 1, 31-46, (1999)
[81] Mankbadi, M. R.; Georgiadis, N. J., Examination of parameters affecting large-eddy simulations of flow past a square cylinder, AIAA J, 53, 6, 1706-1712, (2015)
[82] Rasthofer, U., Computational multiscale methods for turbulent single and two-phase flows. Ph.D. thesis, (2015), München, Technische Universität München, Diss., 2015
[83] Zhao, J.; Leontini, J.; Jacono, D.; Sheridan, J., Fluid-structure interaction of a square cylinder at different angles of attack, J Fluid Mech, 747, 688-721, (2014)
[84] Geuzaine, C.; Remacle, J., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int J Numer Meth Eng, 79, 11, 1309-1331, (2009) · Zbl 1176.74181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.