International cause-specific mortality rates: new insights from a cointegration analysis. (English) Zbl 1390.62332

Summary: This paper applies cointegration techniques, developed in econometrics to model long-run relationships, to cause-of-death data. We analyze the five main causes of death across five major countries, including USA, Japan, France, England & Wales and Australia. Our analysis provides a better understanding of the long-run equilibrium relationships between the five main causes of death, providing new insights into similarities and differences in trends. The results identify for the first time similarities between countries and genders that are consistent with past studies on the aging processes by biologists and demographers. The insights from biological theory on aging are found to be reflected in the cointegrating relations in all of the countries included in the study.


62P20 Applications of statistics to economics
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI


[1] Adams, J. M.; White, M., Biological aging: A fundamental, biological link between socio-economic status and health?, European Journal of Public Health, 14, 331-334, (2004)
[2] Anderson, R. N., US decennial life tables: 1989-91. United States life tables eliminating certain causes of death, DHHS Publication No (PHS) 99-1150-4, 1, (1999)
[3] Arnold, S.; Sherris, M., Forecasting mortality trends allowing for cause-of-death mortality dependence, North American Actuarial Journal, 17, 273-282, (2013)
[4] Arnold, S.; Sherris, M., Causes-of-death mortality: What do we know on their dependence?, North American Actuarial Journal, 19, 116-128, (2015)
[5] Bayo, F., Life tables: 1959-61. United States life tables by causes of death: 1959-61, Public Health Service Publication No 1252, 1, (1968)
[6] Booth, H.; Tickle, L., Mortality modelling and forecasting: A review of methods, Annals of Actuarial Science, 3, 3-43, (2008)
[7] Butler, R. N.; Sprott, R.; Warner, H.; Bland, J.; Feuers, R.; Forster, M.; Fillit, H.; Harman, S. M.; Hewitt, M.; Hyman, M.; Johnson, K.; Kligman, E.; Mcclearn, G.; Nelson, J.; Richardson, A.; Sonntag, W.; Weindruch, R.; Wolf, N., Biomarkers of aging: From primitive organisms to humans, Journal of Gerontology: Biological Sciences, 59A, 560-567, (2004)
[8] Carnes, B. A.; Holden, L. R.; Olshansky, S. J.; Witten, T. M.; Siegel, J. S., Mortality partitions and their relevance to research on senescence, Biogerontology, 7, 183-198, (2006)
[9] Carnes, B. A.; Olshansky, S. J., A biologically motivated partitioning of mortality, Experimental Gerontology, 32, 615-631, (1997)
[10] Carnes, B. A.; Olshansky, S. J.; Hayflick, L., Can human biology allow most of us to become centenarians?, Journal of Gerontology: Biological Sciences, 68, 136-142, (2013)
[11] Caselli, G.; Caselli, G.; Lopez, A. D., Health and Mortality among Elderly Populations, Future longevity among the elderly, 235-265, (1996), Oxford: Clarendon Press, Oxford
[12] Caselli, G.; Vallin, J.; Marsili, M., How useful are the causes of death when extrapolating mortality trends. An update., Social Insurance Studies from the Swedish Social Insurance, 4, 9-36, (2006)
[13] Curtin, L. R.; Armstrong, R. J., US decennial life tables: 1979-81. United States life tables eliminating certain causes of death, DHHS Publication No (PHS) 88-1150-2, 1, (1988)
[14] Gaille, S.; Sherris, M., Modeling mortality with common stochastic long-run trends, The Geneva Papers on Risk and Insurance - Issues and Practice, 36, 595-621, (2011)
[15] Gompertz, B., On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies., Philosophical Transactions of the Royal Society of London, 115, 513-585, (1825)
[16] Greville, T. N.E.; Bayo, F.; Foster, R. S., Life tables: 1969-71. United States life tables by causes of death: 1969-71, DHEW Publication No (HRA) 75-1150, 1, (1975)
[17] Hamilton, J. D., Time Series Analysis, (1994), Princeton: Princeton University Press, Princeton · Zbl 0831.62061
[18] Hayflick, L., “Anti-Aging” is an oxymoron, Journal of Gerontology: Biological Sciences, 59A, 573-578, (2004)
[19] Holliday, R., The multiple and irreversible causes of aging, Journal of Gerontology: Biological Sciences, 59A, 568-572, (2004)
[20] Hougaard, P., Life table methods for heterogeneous populations: Distributions describing the heterogeneity, Biometrika, 71, 75-83, (1984) · Zbl 0553.92013
[21] Jin, K., Modern biological theories of aging, Aging and Disease, 1, 72-74, (2010)
[22] Johansen, S., Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control, 12, 231-254, (1988) · Zbl 0647.62102
[23] Johansen, S., Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica, 59, 1551-1580, (1991) · Zbl 0755.62087
[24] Johansen, S., The role of the constant and linear terms in cointegration analysis of nonstationary variables, Econometric Reviews, 13, 205-229, (1994) · Zbl 0829.62086
[25] Johansen, S.; Juselius, K., Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK, Journal of Econometrics, 53, 211-244, (1992) · Zbl 0850.62905
[26] Johansen, S.; Juselius, K., Identification of the long-run and the short-run structure. An application to the ISLM model, Journal of Econometrics, 63, 7-36, (1994) · Zbl 0806.62097
[27] Kaishev, V. K.; Dimitrova, D. S.; Haberman, S., Modelling the joint distribution of competing risks survival times using copula functions, Insurance: Mathematics and Economics, 41, 339-361, (2007) · Zbl 1141.91518
[28] Lütkepohl, H., New Introduction to Multiple Time Series Analysis, (2005), Berlin: Springer, Berlin · Zbl 1072.62075
[29] Makeham, W., On the law of mortality, Journal of the Institute of Actuaries, 13, 325-358, (1867)
[30] Manton, K. G., Past and future life expectancy increases at later ages: Their implications for the linkage of morbidity, disability, and mortality, Journal of Gerontology, 41, 672-681, (1986)
[31] Manton, K. G.; Myers, G. C., Recent trends in multiple-caused mortality 1968 to 1982: Age and cohort components, Population Research and Policy Review, 6, 161-176, (1987)
[32] Manton, K. G.; Patrick, C. H.; Stallard, E., Mortality model based on delays in progression of chronic diseases: Alternative to cause elimination model, Public Health Reports, 95, 580-588, (1980)
[33] Manton, K. G.; Poss, S. S., Effects of dependency among causes of death for cause elimination life table strategies, Demography, 16, 313-327, (1979)
[34] Manton, K. G.; Stallard, E.; Poss, S. S., Estimates of U.S. multiple cause life tables, Demography, 17, 85-102, (1980)
[35] Manton, K. G.; Stallard, E.; Vaupel, J. W., Alternative models for the heterogeneity of mortality risks among the aged, Journal of the American Statistical Association, 81, 635-644, (1986)
[36] Manton, K. G.; Tolley, H. D.; Poss, S. S., Life table techniques for multiple-cause mortality, Demography, 13, 541-564, (1976)
[37] Mcnown, R.; Rogers, A., Forecasting cause-specific mortality using time series methods, International Journal of Forecasting, 8, 413-432, (1992)
[38] Olshansky, S. J., Simultaneous/multiple cause-delay (SIMCAD): An epidemiological approach to projecting mortality, Journal of Gerontology, 42, 358-365, (1987)
[39] Olshansky, S. J.; Hayflick, L.; Carnes, B. A., Position statement on human aging, Journal of Gerontology: Biological Sciences, 57A, B292-B297, (2002)
[40] Olshansky, S. J.; Hayflick, L.; Perls, T., Anti-aging medicine: The hype and reality - I, Journal of Gerontology: Biological Sciences, 59A, 000-000, (2004)
[41] Robertson, T.; Batty, G. D.; Der, G.; Fenton, C.; Shiels, P. G.; Benzeval, M., Is socioeconomic status associated with biological aging as measured by telomere length?, Epidemiologic Review, 35, 98-111, (2013)
[42] Rosén, M., (2006)
[43] Shryock, H. S.; Siegel, J. S., The Methods and Materials of Demography, (1975), Washington, DC: U.S. Dept of Commerce, Bureau of the Census, U.S. Govt. Printing Office, Washington, DC
[44] Strehler, B., Origin and comparison of the effects of time and high-energy radiations on living systems., The Quarterly Review of Biology, 34, 117-142, (1959)
[45] Tabeau, E.; Ekamper, P.; Huisman, C.; Bosch, A., Improving overall mortality forecasts by analysing cause-of-death, period and cohort effects in trends, European Journal of Population, 15, 153-183, (1999)
[46] Vaupel, J. W.; Yashin, A. I., (1983)
[47] Wilmoth, J. R.; Caselli, G.; Lopez, A. D., Health and Mortality among Elderly Populations, Mortality projections for Japan: A comparison of four methods, 266-287, (1996), Oxford: Clarendon Press, Oxford
[48] Wong-Fupuy, C.; Haberman, S., Projecting mortality trends: Recent developments in the United Kingdom and the United States, North American Actuarial Journal, 8, 56-83, (2004) · Zbl 1085.62517
[49] (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.