×

On the aggregation of experts’ information in bonus-malus systems. (English) Zbl 1390.62203

Summary: In this paper, we propose a new family of premium calculation principles based on the use of prior information from different sources. Under this framework and based on the use of Ordered Weighted Averaging operators, we provide alternative collective and Bayes premiums and describe some approaches to efficiently compute them. Several examples are detailed to illustrate the performance of the new methods.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62F15 Bayesian inference
91B30 Risk theory, insurance (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ArbenzP. and CanestraroD. (2012) Estimating copulas for insurance from scarce observations, expert opinion and prior information: A Bayesian approach. ASTIN Bulletin, 42(1), 271-290. · Zbl 1277.91139
[2] BacharachM. (1975) Group decisions in the face of differences of opinion. Management Science, 22, 182-191.10.1287/mnsc.22.2.182 · Zbl 0338.90004 · doi:10.1287/mnsc.22.2.182
[3] Belles-SamperaJ., MerigóJ.M., GuillénM. and SantolinoM. (2013) The connection between distortion risk measures and ordered weighted averaging operators. Insurance: Mathematics and Economics, 52, 411-420. · Zbl 1284.91204
[4] BergerJ. (1985) Statistical Decision Theory and Bayesian Analysis, 2nd edition. New York: Springer-Verlag.
[5] BlancoV., El-Haj Ben-AliS. and PuertoJ. (2012) Minimizing ordered weighted averaging of rational functions with applications to Continuous Location. Computers & Operations Research, 40, 1448-1460. · Zbl 1352.90058
[6] BlancoV., PuertoJ. and El-HajBen-Ali S. (2014) Revisiting several problems and algorithms in continuous location with ℓ_τ norms. Computational Optimization and Applications, 58(3), 563-595.10.1007/s10589-014-9638-z · Zbl 1297.90073 · doi:10.1007/s10589-014-9638-z
[7] BlancoV., PuertoJ. and SalmerónR. (2016) A general framework for locating hyperplanes to fitting set of points. Working Paper, available at: http://arxiv.org/abs/1505.03451.
[8] BoucherJ.P., DenuitM. and GuillenM. (2009) Number of accidents or number of claims? An approach with zero – inflated poisson models for panel data. Journal of Risk and Insurance, 76(4), 821-846.10.1111/j.1539-6975.2009.01321.x · doi:10.1111/j.1539-6975.2009.01321.x
[9] CardinM. (2014) A note on natural risk statistics, OWA operators and generalized gini functions. In Mathematical and Statistical Methods for Actuarial Sciences and Finance (eds. C.Perna and M.Sibillo), pp. 57-60. Venezia: Springer.10.1007/978-3-319-05014-0 · Zbl 1328.91006 · doi:10.1007/978-3-319-05014-0
[10] CarreteroR. and SarabiaA. (2000) Bonus-Malus system in the fuzzy set theory. IEEE International Conference on Fuzzy Systems, 2, 1033-1036.
[11] CasanovasM., Torres-MartínezA. and MerigóJ.M. (2015) Decision-making processes of non-life insurance pricing using fuzzy logic and OWA operators. Economic Computation and Economic Cybernetics Studies and Research, 49(2), 169-187.
[12] ClemenR.T. and WinklerR. (1999) Combining probability distributions from experts in risk analysis. Risk Analysis, 19(2), 187-203.
[13] EmrouznejadA. and MarraM. (2014) Ordered weighted averaging operators 1988-2014: A citation-based literature survey. International Journal of Intelligent Systems, 29(11), 994-1014.10.1002/int.21673 · doi:10.1002/int.21673
[14] FernándezE., PozoM.A. and PuertoJ. (2014) Ordered weighted average combinatorial optimization: Formulations and their properties. Discrete Applied Mathematics, 169, 97-118.10.1016/j.dam.2014.01.001 · Zbl 1296.90111 · doi:10.1016/j.dam.2014.01.001
[15] GenestC. and ZidekJ.V. (1986) Combining probability distributions: A critique and an annotated bibliography. Statistical Science, 1(1), 114-148.10.1214/ss/1177013825 · Zbl 0955.62509 · doi:10.1214/ss/1177013825
[16] GerberH. (1979) An Introduction to Mathematical Risk Theory. Philadelphia: Huebner Foundation. · Zbl 0431.62066
[17] GómezE., HernándezA., PérezJ.M. and Vázquez-Polo, F.J. (2002) Measuring sensitivity in a Bonus-Malus system. Insurance: Mathematics & Economics, 31, 105-113. · Zbl 1037.62110
[18] Gómez-DénizE., Vázquez-PoloF.J. and PérezJ.M. (2006) A note on computing Bonus-Malus insurance premiums using a hierarchical Bayesian framework. TEST, 15(2), 345-359.10.1007/BF02607056 · Zbl 1110.62143 · doi:10.1007/BF02607056
[19] GuptaA. and LiL. (2007) Integrating long-term care insurance purchase decisions with saving and investment for retirement. Insurance: Mathematics and Economics, 41(3), 362-381. · Zbl 1141.91515
[20] Gurobi Optimization, Inc. (2015) Gurobi Optimizer Reference Manual. Available at: www.gurobi.com.
[21] HeilmannW. (1989) Decision theoretic foundations of credibility theory. Insurance: Mathematics and Economics, 8, 77-95. · Zbl 0687.62087
[22] HürlimannW. (1994) A note on experience rating, reinsurance and premium principles. Insurance: Mathematics and Economics, 14, 197-204. · Zbl 0801.62091
[23] KlugmanS.A., PanjerH.H. and WillmotG.E. (2012) Loss Models: From Data to Decisions, 4th edition. New York: John Wiley and Sons. · Zbl 1272.62002
[24] LemaireJ. (1979) How to define a Bonus-Malus system with an exponential utility function. ASTIN Bulletin, 10(3), 274-282.10.1017/S0515036100005900 · doi:10.1017/S0515036100005900
[25] LemaireJ. (1988) Construction of the new Belgian motor third party tariff structure. ASTIN Bulletin, 18(1), 99-112.10.2143/AST.18.1.2014964 · doi:10.2143/AST.18.1.2014964
[26] LemaireJ. (1998) Bonus-Malus systems: The European and Asian approach to merit-rating (with discussion). North American Actuarial Journal, 2(1), 1-22.
[27] MertM. and SaykanY. (2005) On a Bonus-Malus system where the claim frequency distribution is geometric and the claim severity distribution is pareto. Hacettepe Journal of Mathematics and Statistics, 34, 75-81. · Zbl 1145.91356
[28] MorilloI. and BermúdezL. (2003) Bonus-Malus system using an exponential loss function with an Inverse Gaussian distribution. Insurance: Mathematics and Economics, 33(1), 49-57. · Zbl 1025.62040
[29] NickelS. and PuertoJ. (2005) Location Theory: A Unified Approach. Berlin: Springer. · Zbl 1229.90001
[30] O’HaganA., BuckC., DaneshkhahA., EiserJ., GarthwaiteP., JenkinsonD., OakleyJ. and RakowT. (2006) Uncertain Judgements: Eliciting Experts’ Probabilities. London: Wiley. · Zbl 1269.62009
[31] ReichA. (1986) Properties of premium calculation principles. Insurance: Mathematics and Economics, 5, 97-101. · Zbl 0582.62090
[32] RufoM.J. and PérezC.J. (2012) A Bayesian approach to aggregate experts’ initial information. Electronic Journal of Statistics, 6, 2362-2382.10.1214/12-EJS752 · Zbl 1295.62095 · doi:10.1214/12-EJS752
[33] ShapiroA.F. (2004) Fuzzy logic in insurance. Insurance: Mathematics and Economics, 35(2), 399-424. · Zbl 1093.91028
[34] ShengwangM., WeiY. and WhitmoreG.A. (1999) Accounting for individual overdispersion in a Bonus-Malus system. ASTIN Bulletin, 29(2), 327-337.10.2143/AST.29.2.504619 · doi:10.2143/AST.29.2.504619
[35] StoneM. (1961) The opinion pool. Annals of Mathematical Statistics, 32, 1339-1342.10.1214/aoms/1177704873 · Zbl 0109.38004 · doi:10.1214/aoms/1177704873
[36] YagerR.R. (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18, 183-190.10.1109/21.87068 · Zbl 0637.90057 · doi:10.1109/21.87068
[37] YoungV. (2004) Premium principles. In Encyclopedia of Actuarial Science (eds. J.L.Teugels and B.Sundt). New York: John Wiley.10.1002/9780470012505 · doi:10.1002/9780470012505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.