×

Baryogenesis in a CP invariant theory. (English) Zbl 1388.83921

Summary: We consider baryogenesis in a model which has a CP invariant Lagrangian, CP invariant initial conditions and does not spontaneously break CP at any of the minima. We utilize the fact that tunneling processes between CP invariant minima can break CP to implement baryogenesis. CP invariance requires the presence of two tunneling processes with opposite CP breaking phases and equal probability of occurring. In order for the entire visible universe to see the same CP violating phase, we consider a model where the field doing the tunneling is the inflaton.

MSC:

83F05 Relativistic cosmology
81V35 Nuclear physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A.G. Cohen, A. De Rujula and S.L. Glashow, A Matter-antimatter universe?, Astrophys. J.495 (1998) 539 [astro-ph/9707087] [INSPIRE]. · doi:10.1086/305328
[2] A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz.5 (1967) 32 [INSPIRE].
[3] K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett.84 (2000) 4039 [hep-ph/9907562] [INSPIRE]. · doi:10.1103/PhysRevLett.84.4039
[4] H. Murayama and A. Pierce, Realistic Dirac leptogenesis, Phys. Rev. Lett.89 (2002) 271601 [hep-ph/0206177] [INSPIRE]. · doi:10.1103/PhysRevLett.89.271601
[5] A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP05 (2011) 106 [arXiv:1101.4936] [INSPIRE]. · Zbl 1296.81164 · doi:10.1007/JHEP05(2011)106
[6] A.G. Cohen and D.B. Kaplan, Thermodynamic Generation of the Baryon Asymmetry, Phys. Lett.B 199 (1987) 251 [INSPIRE]. · doi:10.1016/0370-2693(87)91369-4
[7] A.D. Linde, The New Mechanism of Baryogenesis and the Inflationary Universe, Phys. Lett.B 160 (1985) 243 [INSPIRE]. · doi:10.1016/0370-2693(85)91319-X
[8] A.D. Dolgov, NonGUT baryogenesis, Phys. Rept.222 (1992) 309 [INSPIRE]. · doi:10.1016/0370-1573(92)90107-B
[9] I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys.B 249 (1985) 361 [INSPIRE]. · doi:10.1016/0550-3213(85)90021-5
[10] M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys.B 458 (1996) 291 [hep-ph/9507453] [INSPIRE]. · Zbl 1003.81575 · doi:10.1016/0550-3213(95)00538-2
[11] M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett.75 (1995) 398 [hep-ph/9503303] [INSPIRE]. · doi:10.1103/PhysRevLett.75.398
[12] R. Rangarajan and D.V. Nanopoulos, Inflationary baryogenesis, Phys. Rev.D 64 (2001) 063511 [hep-ph/0103348] [INSPIRE].
[13] S. H.-S. Alexander, M.E. Peskin and M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett.96 (2006) 081301 [hep-th/0403069] [INSPIRE]. · doi:10.1103/PhysRevLett.96.081301
[14] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett.B 712 (2012) 425 [arXiv:1110.3971] [INSPIRE]. · doi:10.1016/j.physletb.2012.05.032
[15] M.P. Hertzberg and J. Karouby, Generating the Observed Baryon Asymmetry from the Inflaton Field, Phys. Rev.D 89 (2014) 063523 [arXiv:1309.0010] [INSPIRE].
[16] A. Hook, Baryogenesis from Hawking Radiation, Phys. Rev.D 90 (2014) 083535 [arXiv:1404.0113] [INSPIRE].
[17] L. Pearce, L. Yang, A. Kusenko and M. Peloso, Leptogenesis via neutrino production during Higgs condensate relaxation, Phys. Rev.D 92 (2015) 023509 [arXiv:1505.02461] [INSPIRE].
[18] J. Unwin, On Baryogenesis from a Complex Inflaton, arXiv:1503.06806 [INSPIRE].
[19] T. Banks and W. Fischler, CP Violation and Baryogenesis in the Presence of Black Holes, arXiv:1505.00472 [INSPIRE].
[20] S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
[21] S.W. Hawking and I.G. Moss, Supercooled Phase Transitions in the Very Early Universe, Phys. Lett.B 110 (1982) 35 [INSPIRE]. · doi:10.1016/0370-2693(82)90946-7
[22] Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
[23] J.B. Rehm and K. Jedamzik, Big bang nucleosynthesis with matter / antimatter domains, Phys. Rev. Lett.81 (1998) 3307 [astro-ph/9802255] [INSPIRE]. · doi:10.1103/PhysRevLett.81.3307
[24] H. Kurki-Suonio and E. Sihvola, Constraining antimatter domains in the early universe with big bang nucleosynthesis, Phys. Rev. Lett.84 (2000) 3756 [astro-ph/9912473] [INSPIRE]. · doi:10.1103/PhysRevLett.84.3756
[25] H. Kurki-Suonio and E. Sihvola, Antimatter regions in the early universe and big bang nucleosynthesis, Phys. Rev.D 62 (2000) 103508 [astro-ph/0006448] [INSPIRE].
[26] J.B. Rehm and K. Jedamzik, Limits on cosmic matter - antimatter domains from big bang nucleosynthesis, Phys. Rev.D 63 (2001) 043509 [astro-ph/0006381] [INSPIRE].
[27] A.G. Cohen and A. De Rujula, Scars on the CBR?, astro-ph/9709132 [INSPIRE].
[28] W.H. Kinney, E.W. Kolb and M.S. Turner, Ribbons on the CBR sky: A powerful test of a baryon symmetric universe, Phys. Rev. Lett.79 (1997) 2620 [astro-ph/9704070] [INSPIRE]. · doi:10.1103/PhysRevLett.79.2620
[29] T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond.A 360 (1978) 117. · doi:10.1098/rspa.1978.0060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.