×

Coupling the inflationary sector to matter. (English) Zbl 1388.83835

Summary: We describe the coupling of matter fields to an inflationary sector of supergravity, the inflaton \(\Phi\) and a stabilizer \(S\), in models where the Kähler potential has a flat inflaton direction. Such models include, in particular, advanced versions of the hyperbolic \(\alpha\)-attractor models with a flat inflaton direction Kähler potential, providing a good fit to the observational data. If the superpotential is at least quadratic in the matter fields \(U^i\), with restricted couplings to the inflaton sector, we prove that under certain conditions: i) The presence of the matter fields does not affect a successful inflationary evolution. ii) There are no tachyons in the matter sector during and after inflation. iii) The matter masses squared are higher than \(3H^{2}\) during inflation. The simplest class of theories satisfying all required conditions is provided by models with a flat direction Kähler potential, and with the inflaton \(\Phi\) and a stabilizer \(S\) belonging to a hidden sector, so that matter fields have no direct coupling to the inflationary sector in the Kähler potential and in the superpotential.

MSC:

83E50 Supergravity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett.85 (2000) 3572 [hep-ph/0004243] [INSPIRE].
[2] R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP11 (2010) 011 [arXiv:1008.3375] [INSPIRE]. · doi:10.1088/1475-7516/2010/11/011
[3] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev.D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
[4] A.S. Goncharov and A.D. Linde, Chaotic inflation of the universe in supergravity, Sov. Phys. JETP59 (1984) 930 [INSPIRE].
[5] A.B. Goncharov and A.D. Linde, Chaotic Inflation in Supergravity, Phys. Lett.B 139 (1984) 27 [INSPIRE]. · doi:10.1016/0370-2693(84)90027-3
[6] A. Linde, Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?, JCAP02 (2015) 030 [arXiv:1412.7111] [INSPIRE]. · doi:10.1088/1475-7516/2015/02/030
[7] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP07 (2013) 002 [arXiv:1306.5220] [INSPIRE]. · doi:10.1088/1475-7516/2013/07/002
[8] S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal Supergravity Models of Inflation, Phys. Rev.D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].
[9] R. Kallosh, A. Linde and D. Roest, Superconformal Inflationary α-Attractors, JHEP11 (2013) 198 [arXiv:1311.0472] [INSPIRE]. · Zbl 1342.83485 · doi:10.1007/JHEP11(2013)198
[10] J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev.D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].
[11] J.J.M. Carrasco, R. Kallosh and A. Linde, Cosmological Attractors and Initial Conditions for Inflation, Phys. Rev.D 92 (2015) 063519 [arXiv:1506.00936] [INSPIRE].
[12] J.J.M. Carrasco, R. Kallosh and A. Linde, α-Attractors: Planck, LHC and Dark Energy, JHEP10 (2015) 147 [arXiv:1506.01708] [INSPIRE]. · Zbl 1387.83099
[13] R. Kallosh and A. Linde, Escher in the Sky, Comptes Rendus Physique16 (2015) 914 [arXiv:1503.06785] [INSPIRE]. · doi:10.1016/j.crhy.2015.07.004
[14] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
[15] BICEP2, Keck Array collaborations, P.A.R. Ade et al., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett.116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
[16] Planck collaboration, P.A.R. Ade et al., Planck intermediate results. XLI. A map of lensing-induced B-modes, arXiv:1512.02882 [INSPIRE].
[17] W.E. East, M. Kleban, A. Linde and L. Senatore, Beginning inflation in an inhomogeneous universe, arXiv:1511.05143 [INSPIRE].
[18] A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino with matter fermions, JHEP11 (1997) 001 [hep-th/9709111] [INSPIRE]. · Zbl 0949.81511 · doi:10.1088/1126-6708/1997/11/001
[19] Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[20] Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric inflation, JHEP10 (2015) 001 [arXiv:1504.05958] [INSPIRE]. · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[21] G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity, Phys. Lett.B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE]. · doi:10.1016/j.physletb.2015.11.066
[22] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[23] J.J.M. Carrasco, R. Kallosh and A. Linde, Inflatino-less Cosmology, Phys. Rev.D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].
[24] G. Dall’Agata and F. Farakos, Constrained superfields in Supergravity, JHEP02 (2016) 101 [arXiv:1512.02158] [INSPIRE]. · Zbl 1388.83783 · doi:10.1007/JHEP02(2016)101
[25] A. Achucarro, S. Hardeman, J.M. Oberreuter, K. Schalm and T. van der Aalst, Decoupling limits in multi-sector supergravities, JCAP03 (2013) 038 [arXiv:1108.2278] [INSPIRE]. · doi:10.1088/1475-7516/2013/03/038
[26] R. Kallosh, A. Linde and A. Westphal, Chaotic Inflation in Supergravity after Planck and BICEP2, Phys. Rev.D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].
[27] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP12 (2014) 172 [arXiv:1411.2605] [INSPIRE]. · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[28] R. Kallosh, A. Karlsson and D. Murli, From linear to nonlinear supersymmetry via functional integration, Phys. Rev.D 93 (2016) 025012 [arXiv:1511.07547] [INSPIRE].
[29] R. Kallosh, A. Karlsson, B. Mosk and D. Murli, Orthogonal Nilpotent Superfields from Linear Models, arXiv:1603.02661 [INSPIRE]. · Zbl 1388.83833
[30] E. Dudas, L. Heurtier, C. Wieck and M.W. Winkler, UV Corrections in Sgoldstino-less Inflation, arXiv:1601.03397 [INSPIRE]. · Zbl 1367.83094
[31] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press (1990). · Zbl 0704.15002
[32] J.R. Ellis, A.D. Linde and D.V. Nanopoulos, Inflation Can Save the Gravitino, Phys. Lett.B 118 (1982) 59 [INSPIRE]. · doi:10.1016/0370-2693(82)90601-3
[33] D.V. Nanopoulos, K.A. Olive and M. Srednicki, After Primordial Inflation, Phys. Lett.B 127 (1983) 30 [INSPIRE]. · doi:10.1016/0370-2693(83)91624-6
[34] M. Yu. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett.B 138 (1984) 265 [INSPIRE]. · doi:10.1016/0370-2693(84)91656-3
[35] T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].
[36] R. Kallosh, A. Linde, D. Roest and T. Wrase, in preparation.
[37] A.D. Linde, Axions in inflationary cosmology, Phys. Lett.B 259 (1991) 38 [INSPIRE]. · doi:10.1016/0370-2693(91)90130-I
[38] A.D. Linde, Hybrid inflation, Phys. Rev.D 49 (1994) 748 [astro-ph/9307002] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.