×

zbMATH — the first resource for mathematics

Consistent Kaluza-Klein truncations via exceptional field theory. (English) Zbl 1388.83825

MSC:
83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kaluza, T., On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966, (1921)
[2] Klein, O., Quantum theory and five-dimensional theory of relativity. (in German and English), Z. Phys., 37, 895, (1926) · JFM 52.0970.09
[3] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in eleven-dimensions, Phys. Lett., B 76, 409, (1978) · Zbl 1156.83327
[4] Cremmer, E.; Julia, B., The SO(8) supergravity, Nucl. Phys., B 159, 141, (1979)
[5] Wit, B.; Nicolai, H., N = 8 supergravity, Nucl. Phys., B 208, 323, (1982)
[6] Wit, B.; Nicolai, H., The consistency of the S\^{}{7} truncation in D = 11 supergravity, Nucl. Phys., B 281, 211, (1987)
[7] Nicolai, H.; Pilch, K., Consistent truncation of D = 11 supergravity on ads_{4} × S\^{}{7}, JHEP, 03, 099, (2012) · Zbl 1309.81234
[8] Wit, B.; Nicolai, H., Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, JHEP, 05, 077, (2013) · Zbl 1342.83467
[9] Godazgar, H.; Godazgar, M.; Nicolai, H., Generalised geometry from the ground up, JHEP, 02, 075, (2014) · Zbl 1333.83237
[10] Godazgar, H.; Godazgar, M.; Nicolai, H., Nonlinear Kaluza-Klein theory for dual fields, Phys. Rev., D 88, 125002, (2013)
[11] Wit, B.; Nicolai, H., D = 11 supergravity with local SU(8) invariance, Nucl. Phys., B 274, 363, (1986)
[12] Nastase, H.; Vaman, D.; Nieuwenhuizen, P., Consistency of the ads_{7} × S\^{}{4} reduction and the origin of selfduality in odd dimensions, Nucl. Phys., B 581, 179, (2000) · Zbl 0985.83026
[13] Cvetič, M.; Lü, H.; Pope, CN, Consistent Kaluza-Klein sphere reductions, Phys. Rev., D 62, 064028, (2000)
[14] Cvetič, M.; Lü, H.; Pope, CN; Sadrzadeh, A.; Tran, TA, Consistent SO(6) reduction of type IIB supergravity on S\^{}{5}, Nucl. Phys., B 586, 275, (2000) · Zbl 1009.83057
[15] Scherk, J.; Schwarz, JH, How to get masses from extra dimensions, Nucl. Phys., B 153, 61, (1979)
[16] Kaloper, N.; Myers, RC, The odd story of massive supergravity, JHEP, 05, 010, (1999) · Zbl 0955.83037
[17] Hull, CM, A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[18] Dabholkar, A.; Hull, C., Generalised T-duality and non-geometric backgrounds, JHEP, 05, 009, (2006)
[19] Hull, CM; Reid-Edwards, RA, Gauge symmetry, T-duality and doubled geometry, JHEP, 08, 043, (2008)
[20] Dall’Agata, G.; Prezas, N.; Samtleben, H.; Trigiante, M., Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys., B 799, 80, (2008) · Zbl 1292.83052
[21] Hull, CM; Reid-Edwards, RA, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 09, 014, (2009)
[22] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[23] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[24] Hull, C.; Zwiebach, B., The gauge algebra of double field theory and Courant brackets, JHEP, 09, 090, (2009)
[25] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010) · Zbl 1290.81069
[26] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010) · Zbl 1291.81255
[27] Hohm, O.; Kwak, SK, Frame-like geometry of double field theory, J. Phys., A 44, 085404, (2011) · Zbl 1209.81168
[28] Hohm, O.; Kwak, SK, Massive type II in double field theory, JHEP, 11, 086, (2011) · Zbl 1306.81248
[29] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP11 (2011) 052 [Erratum ibid.1111 (2011) 109] [arXiv:1109.0290] [INSPIRE]. · Zbl 1306.81178
[30] Geissbuhler, D., Double field theory and N = 4 gauged supergravity, JHEP, 11, 116, (2011) · Zbl 1306.81227
[31] Hassler, F.; Lüst, D., Consistent compactification of double field theory on non-geometric flux backgrounds, JHEP, 05, 085, (2014)
[32] Graña, M.; Marques, D., Gauged double field theory, JHEP, 04, 020, (2012) · Zbl 1348.81368
[33] Hohm, O.; Kwak, SK, Double field theory formulation of heterotic strings, JHEP, 06, 096, (2011) · Zbl 1298.81301
[34] Berman, DS; Musaev, ET; Thompson, DC; Thompson, DC, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP, 10, 174, (2012) · Zbl 1397.83178
[35] Musaev, ET, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP, 05, 161, (2013) · Zbl 1342.83411
[36] Aldazabal, G.; Graña, M.; Marqués, D.; Rosabal, JA, Extended geometry and gauged maximal supergravity, JHEP, 06, 046, (2013) · Zbl 1342.83439
[37] Berman, DS; Lee, K., Supersymmetry for gauged double field theory and generalised Scherk-Schwarz reductions, Nucl. Phys., B 881, 369, (2014) · Zbl 1284.81219
[38] K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
[39] Baron, WH, Gaugings from E_{7} extended geometries, Phys. Rev., D 91, 024008, (2015)
[40] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074, (2011) · Zbl 1298.81244
[41] Berman, DS; Godazgar, H.; Perry, MJ; West, P., Duality invariant actions and generalised geometry, JHEP, 02, 108, (2012) · Zbl 1309.81201
[42] Coimbra, A.; Strickland-Constable, C.; Waldram, D., \( {E}_{d(d)}× {\text{\mathbb{R}}}^{+} \) generalised geometry, connections and M-theory, JHEP, 02, 054, (2014) · Zbl 1333.83220
[43] Coimbra, A.; Strickland-Constable, C.; Waldram, D., Supergravity as generalised geometry II: \( {E}_{d(d)}× {\text{\mathbb{R}}}^{+} \) and M-theory, JHEP, 03, 019, (2014)
[44] Hohm, O.; Samtleben, H., Exceptional form of D = 11 supergravity, Phys. Rev. Lett., 111, 231601, (2013)
[45] Hohm, O.; Samtleben, H., Exceptional field theory I: E_{6(6)} covariant form of M-theory and type IIB, Phys. Rev., D 89, 066016, (2014)
[46] Hohm, O.; Samtleben, H., Exceptional field theory II: E_{7(7)}, Phys. Rev., D 89, 066017, (2014)
[47] Hohm, O.; Samtleben, H., Exceptional field theory. III. E_{8(8)}, Phys. Rev., D 90, 066002, (2014)
[48] Godazgar, H.; Godazgar, M.; Hohm, O.; Nicolai, H.; Samtleben, H., Supersymmetric E_{7(7)} exceptional field theory, JHEP, 09, 044, (2014) · Zbl 1333.81172
[49] Hohm, O.; Kwak, SK; Zwiebach, B., Unification of type II strings and T-duality, Phys. Rev. Lett., 107, 171603, (2011)
[50] Wit, B.; Samtleben, H.; Trigiante, M., On Lagrangians and gaugings of maximal supergravities, Nucl. Phys., B 655, 93, (2003) · Zbl 1009.83063
[51] Wit, B.; Samtleben, H.; Trigiante, M., The maximal D = 4 supergravities, JHEP, 06, 049, (2007)
[52] Diffon, A.; Samtleben, H.; Trigiante, M., N = 8 supergravity with local scaling symmetry, JHEP, 04, 079, (2011) · Zbl 1250.83059
[53] Hull, CM; Warner, NP, Noncompact gaugings from higher dimensions, Class. Quant. Grav., 5, 1517, (1988) · Zbl 0655.53063
[54] Hohm, O.; Lüst, D.; Zwiebach, B., The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys., 61, 926, (2013) · Zbl 1338.81328
[55] Berman, DS; Cederwall, M.; Kleinschmidt, A.; Thompson, DC, The gauge structure of generalised diffeomorphisms, JHEP, 01, 064, (2013)
[56] Bergshoeff, E.; Kallosh, R.; Ortín, T.; Roest, D.; Proeyen, A., New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav., 18, 3359, (2001) · Zbl 1004.83053
[57] Cederwall, M.; Edlund, J.; Karlsson, A., Exceptional geometry and tensor fields, JHEP, 07, 028, (2013) · Zbl 1342.83458
[58] Cremmer, E.; Julia, B.; Lü, H.; Pope, CN, Dualization of dualities. 1, Nucl. Phys., B 523, 73, (1998) · Zbl 1031.81599
[59] Diffon, A.; Samtleben, H., Supergravities without an action: gauging the trombone, Nucl. Phys., B 811, 1, (2009) · Zbl 1194.83100
[60] J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP04 (2013) 147 [Erratum ibid.1311 (2013) 210] [arXiv:1302.1652] [INSPIRE].
[61] Samtleben, H.; Weidner, M., The maximal D = 7 supergravities, Nucl. Phys., B 725, 383, (2005) · Zbl 1178.83063
[62] T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8 supergravity. Part 1: cosmological constants in the range −Λ/g\^{}{2} ∈ [6 : 14\(.\)7), arXiv:1109.1424 [INSPIRE].
[63] Hull, CM, The minimal couplings and scalar potentials of the gauged N = 8 supergravities, Class. Quant. Grav., 2, 343, (1985) · Zbl 0575.53079
[64] C.-h. Ahn and K.-s. Woo, Domain wall and membrane flow from other gauged D = 4, N = 8 supergravity. Part 1, Nucl. Phys.B 634 (2002) 141 [hep-th/0109010] [INSPIRE].
[65] Dall’Agata, G.; Inverso, G., De Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett., B 718, 1132, (2013) · Zbl 1332.83104
[66] Cvetič, M.; Lü, H.; Pope, CN; Sadrzadeh, A.; Tran, TA, S\^{}{3} and S\^{}{4} reductions of type IIA supergravity, Nucl. Phys., B 590, 233, (2000) · Zbl 1006.83072
[67] Deger, S.; Kaya, A.; Sezgin, E.; Sundell, P., Spectrum of D = 6, N = 4b supergravity on ads_{3}timess\^{}{3}, Nucl. Phys., B 536, 110, (1998) · Zbl 0940.83030
[68] N.S. Deger, H. Samtleben, O. Sarioglu and D.V.d. Bleeken, A supersymmetric reduction on the three-sphere, Nucl. Phys.B 890 (2014) 350 [arXiv:1410.7168] [INSPIRE]. · Zbl 1326.81127
[69] Hohm, O.; Siegel, W.; Zwiebach, B., Doubled α\^{}{′}-geometry, JHEP, 02, 065, (2014) · Zbl 1333.83190
[70] Bedoya, OA; Marques, D.; Núñez, C., Heterotic α\^{}{′}-corrections in double field theory, JHEP, 12, 074, (2014)
[71] O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α\^{}{′}-deformed Courant brackets, arXiv:1407.0708 [INSPIRE].
[72] Hohm, O.; Zwiebach, B., Double field theory at order α\^{}{′}, JHEP, 11, 075, (2014) · Zbl 1333.81340
[73] Coimbra, A.; Minasian, R.; Triendl, H.; Waldram, D., Generalised geometry for string corrections, JHEP, 11, 160, (2014) · Zbl 1333.83179
[74] Anderson, LB; Gray, J.; Sharpe, E., Algebroids, heterotic moduli spaces and the Strominger system, JHEP, 07, 037, (2014)
[75] Ossa, X.; Svanes, EE, Connections, field redefinitions and heterotic supergravity, JHEP, 12, 008, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.