×

Holographic charge transport in non commutative gauge theories. (English) Zbl 1388.83541

Summary: In this paper, based on the holographic techniques, we explore the hydrodynamics of charge diffusion phenomena in non commutative \( \mathcal{N}=4 \) SYM plasma at strong coupling. In our analysis, we compute the \(R\) charge diffusion rates both along commutative as well as the non commutative coordinates of the brane. It turns out that unlike the case for the shear viscosity, the DC conductivity along the non commutative direction of the brane differs significantly from that of its cousin corresponding to the commutative direction of the brane. Such a discrepancy however smoothly goes away in the limit of the vanishing non commutativity.

MSC:

83C65 Methods of noncommutative geometry in general relativity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[5] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE]. · doi:10.1103/PhysRevLett.87.081601
[6] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE]. · doi:10.1103/PhysRevLett.94.111601
[7] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev.D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].
[8] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/045
[9] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/043
[10] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/042
[11] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP10 (2003) 064 [hep-th/0309213] [INSPIRE]. · doi:10.1088/1126-6708/2003/10/064
[12] P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev.D 78 (2008) 066009 [arXiv:0806.0110] [INSPIRE].
[13] R. Ryblewski and W. Florkowski, Non-boost-invariant motion of dissipative and highly anisotropic fluid, J. Phys.G 38 (2011) 015104 [arXiv:1007.4662] [INSPIRE]. · doi:10.1088/0954-3899/38/1/015104
[14] M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nucl. Phys.A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE]. · doi:10.1016/j.nuclphysa.2010.08.011
[15] M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys.A 856 (2011) 68 [arXiv:1011.3056] [INSPIRE]. · doi:10.1016/j.nuclphysa.2011.02.003
[16] D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett.107 (2011) 101601 [arXiv:1105.3472] [INSPIRE]. · doi:10.1103/PhysRevLett.107.101601
[17] D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP07 (2011) 054 [arXiv:1106.1637] [INSPIRE]. · Zbl 1298.81400 · doi:10.1007/JHEP07(2011)054
[18] A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett.108 (2012) 021601 [arXiv:1110.6825] [INSPIRE]. · doi:10.1103/PhysRevLett.108.021601
[19] L. Patino and D. Trancanelli, Thermal photon production in a strongly coupled anisotropic plasma, JHEP02 (2013) 154 [arXiv:1211.2199] [INSPIRE]. · doi:10.1007/JHEP02(2013)154
[20] V. Jahnke, A. Luna, L. Patiño and D. Trancanelli, More on thermal probes of a strongly coupled anisotropic plasma, JHEP01 (2014) 149 [arXiv:1311.5513] [INSPIRE]. · doi:10.1007/JHEP01(2014)149
[21] R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP09 (2008) 026 [arXiv:0806.2141] [INSPIRE]. · Zbl 1245.81096 · doi:10.1088/1126-6708/2008/09/026
[22] A. Rebhan and D. Steineder, Probing two holographic models of strongly coupled anisotropic plasma, JHEP08 (2012) 020 [arXiv:1205.4684] [INSPIRE]. · doi:10.1007/JHEP08(2012)020
[23] K.A. Mamo, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, JHEP10 (2012) 070 [arXiv:1205.1797] [INSPIRE]. · doi:10.1007/JHEP10(2012)070
[24] I. Gahramanov, T. Kalaydzhyan and I. Kirsch, Anisotropic hydrodynamics, holography and the chiral magnetic effect, Phys. Rev.D 85 (2012) 126013 [arXiv:1203.4259] [INSPIRE].
[25] D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP07 (2012) 031 [arXiv:1202.4436] [INSPIRE]. · doi:10.1007/JHEP07(2012)031
[26] R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev.D 90 (2014) 066006 [arXiv:1406.6019] [INSPIRE].
[27] J. Erdmenger, D. Fernandez and H. Zeller, New transport properties of anisotropic holographic superfluids, JHEP04 (2013) 049 [arXiv:1212.4838] [INSPIRE]. · Zbl 1342.83025 · doi:10.1007/JHEP04(2013)049
[28] S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A strongly coupled anisotropic fluid from dilaton driven holography, JHEP01 (2015) 005 [arXiv:1406.4874] [INSPIRE]. · doi:10.1007/JHEP01(2015)005
[29] L. Cheng, X.-H. Ge and S.-J. Sin, Anisotropic plasma at finite U(1) chemical potential, JHEP07 (2014) 083 [arXiv:1404.5027] [INSPIRE]. · doi:10.1007/JHEP07(2014)083
[30] K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP07 (2007) 088 [arXiv:0706.0411] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/088
[31] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[32] J.M. Maldacena and J.G. Russo, Large-N limit of noncommutative gauge theories, JHEP09 (1999) 025 [hep-th/9908134] [INSPIRE]. · Zbl 0957.81083 · doi:10.1088/1126-6708/1999/09/025
[33] A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett.B 465 (1999) 142 [hep-th/9907166] [INSPIRE]. · Zbl 0987.81108 · doi:10.1016/S0370-2693(99)01037-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.