×

zbMATH — the first resource for mathematics

Dark matter and localised fermions from spherical orbifolds? (English) Zbl 1388.83520
Summary: We study a class of six-dimensional models based on positive curvature surfaces (spherical 2-orbifolds) as extra-spaces. Using the Newman-Penrose formalism, we discuss the particle spectrum in this class of models. The fermion spectrum problem, which has been addressed with flux compactifications in the past, can be avoided using localised fermions. In this framework, we find that there are four types of geometry compatible with the existence of a stable dark matter candidate and we study the simplest case in detail. Using the complementarity between collider resonance searches and relic density constraints, we show that this class of models is under tension, unless the model lies in a funnel region characterised by a resonant Higgs s-channel in the dark matter annihilation.

MSC:
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Nordstrom, On the possibility of unifying the electromagnetic and the gravitational fields, Phys. Z.15 (1914) 504 [physics/0702221] [INSPIRE].
[2] Kaluza, T., On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966, (1921)
[3] Klein, O., Quantum theory and five-dimensional theory of relativity (in German and English), Z. Phys., 37, 895, (1926) · JFM 52.0970.09
[4] G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys.B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
[5] Antoniadis, I., A possible new dimension at a few TeV, Phys. Lett., B 246, 377, (1990)
[6] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257 [hep-ph/9804398] [INSPIRE]. · Zbl 1355.81103
[7] T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev.D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE]. · Zbl 1056.83514
[8] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690, (1999) · Zbl 0946.81074
[9] Agashe, K.; Falkowski, A.; Low, I.; Servant, G., KK parity in warped extra dimension, JHEP, 04, 027, (2008) · Zbl 1246.83173
[10] Ahmed, A.; Grzadkowski, B.; Gunion, JF; Jiang, Y., Higgs dark matter from a warped extra dimension — the truncated-inert-doublet model, JHEP, 10, 033, (2015)
[11] Cacciapaglia, G.; Deandrea, A.; Llodra-Perez, J., A dark matter candidate from Lorentz invariance in 6\(D\), JHEP, 03, 083, (2010) · Zbl 1271.83083
[12] B.A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly cancellation, Phys. Rev. Lett.87 (2001) 031801 [hep-ph/0102010] [INSPIRE].
[13] Maru, N.; Nomura, T.; Sato, J.; Yamanaka, M., the universal extra dimensional model with S\^{}{2}/Z_{2}extra-space, Nucl. Phys., B 830, 414, (2010) · Zbl 1203.83070
[14] Dohi, H.; Oda, K-Y, Universal extra dimensions on real projective plane, Phys. Lett., B 692, 114, (2010)
[15] Randjbar-Daemi, S.; Salam, A.; Strathdee, JA, Spontaneous compactification in six-dimensional Einstein-Maxwell theory, Nucl. Phys., B 214, 491, (1983)
[16] J.M. Frère, M.V. Libanov, E.Y. Nugaev and S.V. Troitsky, Fermions in the vortex background on a sphere, JHEP06 (2003) 009 [hep-ph/0304117] [INSPIRE].
[17] Frère, JM; Libanov, M.; Mollet, S.; Troitsky, S., Neutrino hierarchy and fermion spectrum from a single family in six dimensions: realistic predictions, JHEP, 08, 078, (2013)
[18] J.-M. Frère, M. Libanov, S. Mollet and S. Troitsky, Flavour changing Z\^{}{′}signals in a 6D inspired model, arXiv:1505.08017 [INSPIRE].
[19] Winslow, PT; Sigurdson, K.; Ng, JN, Multi-state dark matter from spherical extra dimensions, Phys. Rev., D 82, 023512, (2010)
[20] R. Flurry, Symmetry groups: theory and chemical applications, Prentice-Hall, U.S.A. (1980).
[21] M. Rausch de Traubenberg, Clifford algebras in physics, in 7\^{}{th}International Conference on Clifford Algebras and their Applications in Mathematical Physics, Toulouse France May 19-29 2005 [hep-th/0506011] [INSPIRE]. · Zbl 1182.15015
[22] Dobrescu, BA; Ponton, E., Chiral compactification on a square, JHEP, 03, 071, (2004)
[23] Lichnerowicz, A., Champs spinoriels et propagateurs en relativité générale (in French), Bull. Soc. Math. France, 92, 11, (1964) · Zbl 0138.44301
[24] Conway, JH; Huson, DH, The orbifold notation for two-dimensional groups, Struct. Chem., 13, 247, (2002)
[25] J.H. Conway, H. Burgiel and C. Goodman-Strauss, The symmetries of things, A.K. Peters Ltd., Wellesley MA U.S.A. (2008). · Zbl 1173.00001
[26] S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].
[27] Geraci, AA; Smullin, SJ; Weld, DM; Chiaverini, J.; Kapitulnik, A., improved constraints on non-Newtonian forces at 10 microns, Phys. Rev., D 78, 022002, (2008)
[28] I.M. Gelfand, R.A. Minlos and Z.J. Shapiro, Representations of the rotation group and of the Lorentz group, and their applications, MacMillan, U.K. (1963).
[29] Newman, ET; Penrose, R., Note on the Bondi-metzner-Sachs group, J. Math. Phys., 7, 863, (1966)
[30] R. Penrose and W. Rindler, Spinors and space-time, vol. 1, Cambridge University Press, Cambridge U.K. (1984). · Zbl 0538.53024
[31] Castillo, GT, Spin-weighted spherical harmonics and their applications, Rev. Mex. Fıs., 53, 125, (2007) · Zbl 1326.83056
[32] Dohi, H.; Kakuda, T.; Nishiwaki, K.; Oda, K-Y; Okuda, N., Notes on sphere-based universal extra dimensions, Afr. Rev. Phys., 9, 0069, (2014)
[33] R. Camporesi and A. Higuchi, On the eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys.20 (1996) 1 [gr-qc/9505009] [INSPIRE]. · Zbl 0865.53044
[34] A.A. Abrikosov, Jr., Dirac operator on the Riemann sphere, hep-th/0212134 [INSPIRE].
[35] L. Nilse, Classification of 1D and 2D orbifolds, hep-ph/0601015 [INSPIRE].
[36] H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev.D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
[37] Cacciapaglia, G.; Deandrea, A.; Llodra-Perez, J., The universal real projective plane: LHC phenomenology at one loop, JHEP, 10, 146, (2011) · Zbl 1303.81105
[38] Rold, L., radiative corrections in 5D and 6D expanding in winding modes, Phys. Rev., D 69, 105015, (2004)
[39] Cacciapaglia, G.; Kubik, B., Even tiers and resonances on the real projective plane, JHEP, 02, 052, (2013) · Zbl 1342.81558
[40] ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Phys. Rev.D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
[41] CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at\( \sqrt{s}=8 \)TeV, JHEP04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
[42] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2\(.\)0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
[43] Alwall, J.; etal., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP, 07, 079, (2014)
[44] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6\(.\)4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
[45] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
[46] S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
[47] Dumont, B.; etal., toward a public analysis database for LHC new physics searches using madanalysis 5, Eur. Phys. J., C 75, 56, (2015)
[48] Conte, E.; Fuks, B.; Serret, G., Madanalysis 5, A user-friendly framework for collider phenomenology, Comput. Phys. Commun., 184, 222, (2013)
[49] Conte, E.; Dumont, B.; Fuks, B.; Wymant, C., designing and recasting LHC analyses with madanalysis 5, Eur. Phys. J., C 74, 3103, (2014)
[50] Nussinov, S., Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett., B 165, 55, (1985)
[51] Petraki, K.; Volkas, RR, Review of asymmetric dark matter, Int. J. Mod. Phys., A 28, 1330028, (2013)
[52] Zurek, KM, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept., 537, 91, (2014) · Zbl 1358.81167
[53] Griest, K.; Seckel, D., Three exceptions in the calculation of relic abundances, Phys. Rev., D 43, 3191, (1991)
[54] Arbey, A.; Cacciapaglia, G.; Deandrea, A.; Kubik, B., Dark matter in a twisted bottle, JHEP, 01, 147, (2013) · Zbl 1342.83514
[55] A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3\(.\)4 for collider physics within and beyond the standard model, Comput. Phys. Commun.184 (2013) 1729 [arXiv:1207.6082] [INSPIRE]. · Zbl 1286.81009
[56] Wolfram Resarch Inc., Mathematica 8, U.S.A. (2010).
[57] K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP01 (2006) 038 [hep-ph/0509119] [INSPIRE].
[58] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.