×

zbMATH — the first resource for mathematics

The fluid manifesto: emergent symmetries, hydrodynamics, and black holes. (English) Zbl 1388.83350
Summary: We focus on the question of how relativistic fluid dynamics should be thought of as a Wilsonian effective field theory emerging from Schwinger-Keldysh path integrals. Taking the basic principles of Schwinger-Keldysh formalism seriously, we are led to a series of remarkable statements and conjectures, which we phrase in terms of a broad programme relating relativistic fluid dynamics and topological sigma models. Apart from the intrinsic interest for these ideas from the non-equilibrium field theory viewpoint, we also emphasize its relevance to various fundamental questions in black hole physics.

MSC:
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C57 Black holes
81S40 Path integrals in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schwinger, JS, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407, (1961) · Zbl 0098.43503
[2] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [Sov. Phys. JETP20 (1965) 1018] [INSPIRE].
[3] L.D. Landau and E.M. Lifshitz, Course of theoretical physics, vol. 6, Butterworth-Heinemann, U.K. (1987).
[4] Haehl, FM; Loganayagam, R.; Rangamani, M., The eightfold way to dissipation, Phys. Rev. Lett., 114, 201601, (2015) · Zbl 1388.81456
[5] Haehl, FM; Loganayagam, R.; Rangamani, M., Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP, 05, 060, (2015) · Zbl 1388.81456
[6] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047
[7] Israel, W., Thermo field dynamics of black holes, Phys. Lett., A 57, 107, (1976)
[8] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021, (2003)
[9] Herzog, CP; Son, DT, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP, 03, 046, (2003)
[10] Skenderis, K.; Rees, BC, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP, 05, 085, (2009)
[11] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008)
[12] Rangamani, M., Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav., 26, 224003, (2009) · Zbl 1181.83005
[13] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Black holes in higher dimensions, (2012), pg. 348 [arXiv:1107.5780] [INSPIRE]. · Zbl 1263.83009
[14] Chou, K-C; Su, Z-B; Hao, B-L; Yu, L., Equilibrium and nonequilibrium formalisms made unified, Phys. Rept., 118, 1, (1985)
[15] G. ’t Hooft and M.J.G. Veltman, Diagrammar, NATO Sci. Ser. B4 (1974) 177 [INSPIRE].
[16] Witten, E., Supersymmetry and Morse theory, J. Diff. Geom., 17, 661, (1982) · Zbl 0499.53056
[17] Evenbly, G.; Vidal, G., Tensor network renormalization, Phys. Rev. Lett., 115, 180405, (2015) · Zbl 1231.82021
[18] Alfaro, J.; Damgaard, PH, BRST symmetry of field redefinitions, Annals Phys., 220, 188, (1992) · Zbl 0767.53050
[19] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G., Topological field theory, Phys. Rept., 209, 129, (1991)
[20] Kubo, R., Statistical mechanical theory of irreversible processes. 1. general theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap., 12, 570, (1957)
[21] Martin, PC; Schwinger, JS, Theory of many particle systems. 1, Phys. Rev., 115, 1342, (1959) · Zbl 0091.22906
[22] Weldon, HA, Two sum rules for the thermal n-point functions, Phys. Rev., D 72, 117901, (2005)
[23] S. Cecotti and C. Vafa, 2d wall-crossing, R-twisting and a supersymmetric index, arXiv:1002.3638 [INSPIRE]. · Zbl 0787.58008
[24] Dijkgraaf, R.; Moore, GW, Balanced topological field theories, Commun. Math. Phys., 185, 411, (1997) · Zbl 0888.58008
[25] Vafa, C.; Witten, E., A strong coupling test of S duality, Nucl. Phys., B 431, 3, (1994) · Zbl 0964.81522
[26] Zucchini, R., Basic and equivariant cohomology in balanced topological field theory, J. Geom. Phys., 35, 299, (2000) · Zbl 0989.81112
[27] F.M. Haehl, R. Loganayagam and M. Rangamani, Equivariant construction of dissipative dynamics, to appear (2015). · Zbl 1388.83351
[28] Jensen, K.; Loganayagam, R.; Yarom, A., Anomaly inflow and thermal equilibrium, JHEP, 05, 134, (2014)
[29] Haehl, FM; Loganayagam, R.; Rangamani, M., Effective actions for anomalous hydrodynamics, JHEP, 03, 034, (2014)
[30] Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Jain, S.; Minwalla, S.; Sharma, T., Constraints on fluid dynamics from equilibrium partition functions, JHEP, 09, 046, (2012) · Zbl 1397.82026
[31] Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A., Towards hydrodynamics without an entropy current, Phys. Rev. Lett., 109, 101601, (2012)
[32] Witten, E., Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math., 50, 347, (2011) · Zbl 1337.81106
[33] Marcus, N., The other topological twisting of N = 4 Yang-Mills, Nucl. Phys., B 452, 331, (1995) · Zbl 0925.81348
[34] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys., 1, 1, (2007) · Zbl 1128.22013
[35] Mathai, V.; Quillen, DG, Superconnections, thom classes and equivariant differential forms, Topology, 25, 85, (1986) · Zbl 0592.55015
[36] Martin, PC; Siggia, ED; Rose, HA, Statistical dynamics of classical systems, Phys. Rev., A 8, 423, (1973)
[37] F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabaticity, dissipation, and KMS flavour invariance, work in progress (2015). · Zbl 1388.81456
[38] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, DT, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev., D 85, 085029, (2012)
[39] Dubovsky, S.; Hui, L.; Nicolis, A., Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev., D 89, 045016, (2014)
[40] Bhattacharya, J.; Bhattacharyya, S.; Rangamani, M., Non-dissipative hydrodynamics: effective actions versus entropy current, JHEP, 02, 153, (2013) · Zbl 1342.76006
[41] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev., D 91, 105031, (2015)
[42] Grozdanov, S.; Polonyi, J., Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasiparticles, Phys. Rev., D 92, 065009, (2015)
[43] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123, (2014)
[44] Harder, M.; Kovtun, P.; Ritz, A., On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP, 07, 025, (2015) · Zbl 1388.83352
[45] Boer, J.; Heller, MP; Pinzani-Fokeeva, N., Effective actions for relativistic fluids from holography, JHEP, 08, 086, (2015) · Zbl 1388.83360
[46] M. Crossley, P. Glorioso, H. Liu and Y. Wang, Off-shell hydrodynamics from holography, arXiv:1504.07611 [INSPIRE]. · Zbl 1388.83344
[47] Nickel, D.; Son, DT, Deconstructing holographic liquids, New J. Phys., 13, 075010, (2011)
[48] Jensen, K.; Loganayagam, R.; Yarom, A., Chern-Simons terms from thermal circles and anomalies, JHEP, 05, 110, (2014)
[49] Ferrari, F., Gauge theories, D-branes and holography, Nucl. Phys., B 880, 247, (2014) · Zbl 1284.81205
[50] Das, SR; Mandal, G.; Wadia, SR, Stochastic quantization on two-dimensional theory space and Morse theory, Mod. Phys. Lett., A 4, 745, (1989)
[51] Parisi, G.; Sourlas, N., Random magnetic fields, supersymmetry and negative dimensions, Phys. Rev. Lett., 43, 744, (1979)
[52] Jarzynski, C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690, (1997)
[53] Jarzynski, C., Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach, Phys. Rev., E 56, 5018, (1997)
[54] Papadodimas, K.; Raju, S., An infalling observer in AdS/CFT, JHEP, 10, 212, (2013)
[55] Papadodimas, K.; Raju, S., Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett., 112, 051301, (2014)
[56] K. Papadodimas and S. Raju, Comments on the necessity and implications of state-dependence in the black hole interior, arXiv:1503.08825 [INSPIRE].
[57] Iyer, V.; Wald, RM, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev., D 50, 846, (1994)
[58] L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE]. · Zbl 0963.83024
[59] Boer, J.; Hubeny, VE; Rangamani, M.; Shigemori, M., Brownian motion in AdS/CFT, JHEP, 07, 094, (2009)
[60] Son, DT; Teaney, D., Thermal noise and stochastic strings in AdS/CFT, JHEP, 07, 021, (2009)
[61] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781, (2013) · Zbl 1338.83057
[62] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090, (2013) · Zbl 1342.83185
[63] K. Efetov, Supersymmetry in disorder and chaos, Cambridge University Press, Cambridge U.K. (1999). · Zbl 0990.82501
[64] J. Kurchan, Supersymmetry, replica and dynamic treatments of disordered systems: a parallel presentation, cond-mat/0209399. · Zbl 1035.82043
[65] Ooguri, H.; Strominger, A.; Vafa, C., Black hole attractors and the topological string, Phys. Rev., D 70, 106007, (2004)
[66] Zinn-Justin, J., Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys., 113, 1, (2002)
[67] Janssen, H-K, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys., B 23, 377, (1976)
[68] Dominicis, C.; Peliti, L., Field theory renormalization and critical dynamics above T_{c}: helium, antiferromagnets and liquid gas systems, Phys. Rev., B 18, 353, (1978)
[69] Horne, JH, Superspace versions of topological theories, Nucl. Phys., B 318, 22, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.