×

zbMATH — the first resource for mathematics

Holomorphic Yukawa couplings in heterotic string theory. (English) Zbl 1388.81776
Summary: We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in [the second author et al., J. High Energy Phys. 2014, No. 6, Paper No. 100, 25 p. (2014; Zbl 1390.81572)].
Reviewer: Reviewer (Berlin)

MSC:
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Candelas, P.; Horowitz, GT; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys., B 258, 46, (1985)
[2] Strominger, A.; Witten, E., New manifolds for superstring compactification, Commun. Math. Phys., 101, 341, (1985)
[3] Witten, E., Symmetry breaking patterns in superstring models, Nucl. Phys., B 258, 75, (1985)
[4] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A heterotic standard model, Phys. Lett., B 618, 252, (2005) · Zbl 1247.81349
[5] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A standard model from the E_{8} × E_{8} heterotic superstring, JHEP, 06, 039, (2005)
[6] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., The exact MSSM spectrum from string theory, JHEP, 05, 043, (2006)
[7] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett., B 633, 783, (2006) · Zbl 1247.81348
[8] Blumenhagen, R.; Moster, S.; Weigand, T., Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys., B 751, 186, (2006) · Zbl 1192.81257
[9] Blumenhagen, R.; Moster, S.; Reinbacher, R.; Weigand, T., Massless spectra of three generation U(N) heterotic string vacua, JHEP, 05, 041, (2007)
[10] Anderson, LB; He, Y-H; Lukas, A., Heterotic compactification, an algorithmic approach, JHEP, 07, 049, (2007)
[11] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[12] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and a new heterotic standard model, JHEP, 02, 054, (2010) · Zbl 1270.81146
[13] Braun, V.; Candelas, P.; Davies, R., A three-generation Calabi-Yau manifold with small Hodge numbers, Fortsch. Phys., 58, 467, (2010) · Zbl 1194.14061
[14] Braun, V.; Candelas, P.; Davies, R.; Donagi, R., The MSSM spectrum from (0, 2)-deformations of the heterotic standard embedding, JHEP, 05, 127, (2012) · Zbl 1348.81435
[15] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev., D 84, 106005, (2011)
[16] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012) · Zbl 1397.81406
[17] Anderson, LB; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, JHEP, 01, 047, (2014)
[18] Strominger, A., Yukawa couplings in superstring compactification, Phys. Rev. Lett., 55, 2547, (1985)
[19] Candelas, P., Yukawa couplings between (2, 1) forms, Nucl. Phys., B 298, 458, (1988) · Zbl 0659.53059
[20] Candelas, P.; Ossa, X., Moduli space of Calabi-Yau manifolds, Nucl. Phys., B 355, 455, (1991) · Zbl 0732.53056
[21] Greene, BR; Kirklin, KH; Miron, PJ; Ross, GG, A three generation superstring model. 1. compactification and discrete symmetries, Nucl. Phys., B 278, 667, (1986)
[22] Greene, BR; Kirklin, KH; Miron, PJ; Ross, GG, A three generation superstring model. 2. symmetry breaking and the low-energy theory, Nucl. Phys., B 292, 606, (1987)
[23] Greene, BR; Kirklin, KH; Miron, PJ; Ross, GG, 27\^{3} Yukawa couplings for a three generation superstring model, Phys. Lett., B 192, 111, (1987)
[24] Braun, V.; He, Y-H; Ovrut, BA, Yukawa couplings in heterotic standard models, JHEP, 04, 019, (2006)
[25] Bouchard, V.; Cvetič, M.; Donagi, R., Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys., B 745, 62, (2006) · Zbl 1214.81193
[26] Anderson, LB; Gray, J.; Grayson, D.; He, Y-H; Lukas, A., Yukawa couplings in heterotic compactification, Commun. Math. Phys., 297, 95, (2010) · Zbl 1203.81130
[27] Anderson, LB; Gray, J.; Ovrut, B., Yukawa textures from heterotic stability walls, JHEP, 05, 086, (2010) · Zbl 1287.81087
[28] Green, P.; Hubsch, T., Calabi-Yau manifolds as complete intersections in products of complex projective spaces, Commun. Math. Phys., 109, 99, (1987) · Zbl 0611.53055
[29] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[30] T. Hubsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore (1992) [INSPIRE]. · Zbl 0771.53002
[31] Buchbinder, EI; Constantin, A.; Lukas, A., The moduli space of heterotic line bundle models: a case study for the tetra-quadric, JHEP, 03, 025, (2014)
[32] Buchbinder, EI; Constantin, A.; Lukas, A., A heterotic standard model with B-L symmetry and a stable proton, JHEP, 06, 100, (2014) · Zbl 1390.81572
[33] Buchbinder, EI; Constantin, A.; Lukas, A., Non-generic couplings in supersymmetric standard models, Phys. Lett., B 748, 251, (2015) · Zbl 1345.81138
[34] Buchbinder, EI; Constantin, A.; Lukas, A., Heterotic QCD axion, Phys. Rev., D 91, 046010, (2015)
[35] D. Huybrechts, Complex geometry: an introduction, Springer, Berlin Germany (2004).
[36] M.B. Green, J.H. Schwarz and E. Witten, Supersting theory. Vol. 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987).
[37] P. Candelas, Lectures on complex manifolds, published in Proceedings, Superstrings 87, Trieste Italy (1987), pg. 1 [INSPIRE].
[38] P. Griffiths and J. Harris, Principles of algebraic geometry, Interscience, New York U.S.A. (1978). · Zbl 0408.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.