×

zbMATH — the first resource for mathematics

Conformal manifolds: ODEs from OPEs. (English) Zbl 1388.81630
Summary: The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
Software:
OEIS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys., A 50, 354002, (2017) · Zbl 1376.82012
[2] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., Long-range critical exponents near the short-range crossover, Phys. Rev. Lett., 118, 241601, (2017) · Zbl 1376.82012
[3] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324
[4] Gates, SJ; Grisaru, MT; Rocek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry, Front. Phys., 58, 1, (1983) · Zbl 0986.58001
[5] Seiberg, N., Supersymmetry and non-peturbative beta functions, Phys. Lett., B 206, 75, (1988)
[6] Leigh, RG; Strassler, MJ, exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys., B 447, 95, (1995) · Zbl 1009.81570
[7] M.J. Strassler, On renormalization group flows and exactly marginal operators in three-dimensions, hep-th/9810223 [INSPIRE].
[8] Chang, C-M; Yin, X., families of conformal fixed points of N = 2 Chern-Simons-matter theories, JHEP, 05, 108, (2010) · Zbl 1287.81078
[9] Green, D.; Komargodski, Z.; Seiberg, N.; Tachikawa, Y.; Wecht, B., Exactly marginal deformations and global symmetries, JHEP, 06, 106, (2010) · Zbl 1288.81079
[10] Gomis, J.; Hsin, P-S; Komargodski, Z.; Schwimmer, A.; Seiberg, N.; Theisen, S., Anomalies, conformal manifolds and spheres, JHEP, 03, 022, (2016) · Zbl 1388.81820
[11] Gomis, J.; Komargodski, Z.; Ooguri, H.; Seiberg, N.; Wang, Y., Shortening anomalies in supersymmetric theories, JHEP, 01, 067, (2017) · Zbl 1373.81353
[12] Buican, M.; Nishinaka, T., Compact conformal manifolds, JHEP, 01, 112, (2015) · Zbl 1388.81786
[13] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE]. · Zbl 1390.81500
[14] Ranganathan, K.; Sonoda, H.; Zwiebach, B., Connections on the state space over conformal field theories, Nucl. Phys., B 414, 405, (1994) · Zbl 1007.81543
[15] Baggio, M.; Niarchos, V.; Papadodimas, K., Aspects of Berry phase in QFT, JHEP, 04, 062, (2017) · Zbl 1378.81103
[16] Li, D.; Meltzer, D.; Poland, D., Conformal collider physics from the lightcone bootstrap, JHEP, 02, 143, (2016)
[17] Hartman, T.; Jain, S.; Kundu, S., A new spin on causality constraints, JHEP, 10, 141, (2016) · Zbl 1390.83114
[18] Hofman, DM; Li, D.; Meltzer, D.; Poland, D.; Rejon-Barrera, F., A proof of the conformal collider bounds, JHEP, 06, 011, (2016) · Zbl 1388.81048
[19] Li, D.; Meltzer, D.; Poland, D., Conformal bootstrap in the Regge limit, JHEP, 12, 013, (2017) · Zbl 1383.81242
[20] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., bootstrapping 3D fermions, JHEP, 03, 120, (2016)
[21] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D., bootstrapping 3D fermions with global symmetries, JHEP, 01, 036, (2018)
[22] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, arXiv:1705.04278 [INSPIRE].
[23] Dymarsky, A.; Kos, F.; Kravchuk, P.; Poland, D.; Simmons-Duffin, D., the 3d stress-tensor bootstrap, JHEP, 02, 164, (2018) · Zbl 1387.81313
[24] S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, arXiv:1605.08087 [INSPIRE]. · Zbl 1388.81656
[25] Bashmakov, V.; Bertolini, M.; Raj, H., On non-supersymmetric conformal manifolds: field theory and holography, JHEP, 11, 167, (2017) · Zbl 1383.81180
[26] S. Hollands, Operator product expansion algebra, at Local Quantum Physics and beyond — in memorian Rudolf Haag, Hamburg Germany (2016).
[27] S. Hollands, Operator product expansion algebra, at Wolfhard Zimmerman memorial symposium, Munich Germany (2017). · Zbl 1383.81188
[28] Zamolodchikov, AB, Renormalization group and perturbation theory near fixed points in two-dimensional field theory, Sov. J. Nucl. Phys., 46, 1090, (1987)
[29] J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge University Press, Cambridge U.K. (1996). · Zbl 0914.60002
[30] Berenstein, D.; Miller, A., Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence, Phys. Rev., D 90, (2014)
[31] D. Berenstein and A. Miller, Logarithmic enhancements in conformal perturbation theory and their real time interpretation, arXiv:1607.01922 [INSPIRE].
[32] Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising Model in 2.01 and 3 Dimensions, J. Phys.A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE]. · Zbl 1366.82009
[33] Fitzpatrick, AL; Kaplan, J.; Poland, D.; Simmons-Duffin, D., The analytic bootstrap and AdS superhorizon locality, JHEP, 12, 004, (2013) · Zbl 1342.83239
[34] Komargodski, Z.; Zhiboedov, A., Convexity and liberation at large spin, JHEP, 11, 140, (2013)
[35] Kos, F.; Poland, D.; Simmons-Duffin, D., bootstrapping the O(\(N\)) vector models, JHEP, 06, 091, (2014) · Zbl 1392.81202
[36] Hogervorst, M.; Rychkov, S., Radial coordinates for conformal blocks, Phys. Rev., D 87, 106004, (2013)
[37] Cardy, JL, Continuously varrying exponents and the value of the central charge, J. Phys., A 20, l891, (1987)
[38] N.J.A. Sloane, The online encyclopedia of integer sequences, http://oeis.org. · Zbl 1044.11108
[39] Hogervorst, M.; Rees, BC, Crossing symmetry in alpha space, JHEP, 11, 193, (2017) · Zbl 1383.81231
[40] Y. Tachikawa, \(N\) = 2 supersymmetric dynamics for pedestrians Lecture Notes Phys.890 (2014) 1 [arXiv:1312.2684] [INSPIRE].
[41] Khandker, ZU; Li, D.; Poland, D.; Simmons-Duffin, D., \( \mathcal{N} \) = 1 superconformal blocks for general scalar operators, JHEP, 08, 049, (2014)
[42] Li, Z.; Su, N., the most general 4\(d\)\( \mathcal{N} \) = 1 superconformal blocks for scalar operators, JHEP, 05, 163, (2016) · Zbl 1388.81573
[43] Cornagliotto, M.; Lemos, M.; Schomerus, V., Long multiplet bootstrap, JHEP, 10, 119, (2017) · Zbl 1383.81287
[44] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1383.81242
[45] R. Jackiw and S.Y. Pi, Conformal Blocks for the 4-Point Function in Conformal Quantum Mechanics, Phys. Rev.D 86 (2012) 045017 [Erratum ibid.D 86 (2012) 089905] [arXiv:1205.0443] [INSPIRE]. · Zbl 1388.81048
[46] Mazac, D., analytic bounds and emergence of AdS_{2}physics from the conformal bootstrap, JHEP, 04, 146, (2017) · Zbl 1378.81121
[47] Bulycheva, K., A note on the SYK model with complex fermions, JHEP, 12, 069, (2017) · Zbl 1383.81188
[48] Beem, C.; Rastelli, L.; Rees, BC, the\( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. Lett., 111, (2013)
[49] Korchemsky, GP, On level crossing in conformal field theories, JHEP, 03, 212, (2016) · Zbl 1388.81853
[50] Bouwknegt, P.; Schoutens, K., W symmetry in conformal field theory, Phys. Rept., 223, 183, (1993)
[51] Förste, S.; Roggenkamp, D., Current current deformations of conformal field theories and WZW models, JHEP, 05, 071, (2003)
[52] Sen, K.; Sinha, A., On critical exponents without Feynman diagrams, J. Phys., A 49, 445401, (2016) · Zbl 1352.81062
[53] Pasterski, S.; Shao, S-H, Conformal basis for flat space amplitudes, Phys. Rev., D 96, (2017)
[54] Li, W., Inverse bootstrapping conformal field theories, JHEP, 01, 077, (2018) · Zbl 1384.81110
[55] Gopakumar, R.; Kaviraj, A.; Sen, K.; Sinha, A., Conformal bootstrap in Mellin space, Phys. Rev. Lett., 118, (2017) · Zbl 1380.81320
[56] Gopakumar, R.; Kaviraj, A.; Sen, K.; Sinha, A., A Mellin space approach to the conformal bootstrap, JHEP, 05, 027, (2017) · Zbl 1380.81320
[57] Suchanek, P., elliptic recursion for 4-point superconformal blocks and bootstrap in N = 1 SLFT, JHEP, 02, 090, (2011) · Zbl 1294.81245
[58] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N} \) = 4 superconformal bootstrap of the K3 CFT, JHEP05 (2017) 126 [arXiv:1511.04065] [INSPIRE]. · Zbl 1376.82012
[59] Mitev, V.; Pomoni, E., 2D CFT blocks for the 4D class\( {\mathcal{S}}_k \)theories, JHEP, 08, 009, (2017) · Zbl 1381.81120
[60] R. Poghossian, Recurrence relations for the\( {\mathcal{W}}_3 \)conformal blocks and\( \mathcal{N} \) = 2 SYM partition functions, JHEP11 (2017) 053 [Erratum ibid.1801 (2018) 088] [arXiv:1705.00629] [INSPIRE]. · Zbl 1384.81138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.