zbMATH — the first resource for mathematics

T-dualization in a curved background in absence of a global symmetry. (English) Zbl 1388.81516
Summary: We investigate T-duality of a closed string moving in a weakly curved background of the second order. A previously discussed weakly curved background consisted of a flat metric and a linearly coordinate dependent Kalb-Ramond field with an infinitesimal strength. The background here considered differs from the above in a coordinate dependent metric of the second order. Consequently, the corresponding Ricci tensor is nonzero. As this background does not posses the global shift symmetry the generalized Buscher T-dualization procedure is not applicable to it. We redefine it and make it applicable to backgrounds without the global symmetry.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory
Full Text: DOI
[1] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. Rept., 244, 77, (1994)
[2] Alvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., An introduction to T duality in string theory, Nucl. Phys. Proc. Suppl., 41, 1, (1995) · Zbl 1076.81554
[3] Maharana, J., The worldsheet perspective of t-duality symmetry in string theory, Int. J. Mod. Phys., A 28, 1330011, (2013) · Zbl 1262.81146
[4] A. Sen, An introduction to nonperturbative string theory, hep-th/9802051 [INSPIRE].
[5] Berman, DS; Thompson, DC, Duality symmetric string and M-theory, Phys. Rept., 566, 1, (2014)
[6] Green, MB; Schwarz, JH; Brink, L., N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys., B 198, 474, (1982)
[7] Kikkawa, K.; Yamasaki, M., Casimir effects in superstring theories, Phys. Lett., B 149, 357, (1984)
[8] N. Sakai and I. Senda, Vacuum energies of string compactified on torus, Prog. Theor. Phys.75 (1986) 692 [Erratum ibid.77 (1987) 773] [INSPIRE].
[9] Lidsey, JE; Wands, D.; Copeland, EJ, Superstring cosmology, Phys. Rep., C 337, 343, (2000)
[10] Buscher, T., A symmetry of the string background field equations, Phys. Lett., B 194, 59, (1987)
[11] Buscher, T., Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett., B 201, 466, (1980)
[12] Roček, M.; Verlinde, EP, Duality, quotients and currents, Nucl. Phys., B 373, 630, (1992)
[13] Alvarez, E.; Alvarez-Gaume, L.; Barbon, J.; Lozano, Y., Some global aspects of duality in string theory, Nucl. Phys., B 415, 71, (1994) · Zbl 1007.81529
[14] Ossa, XC; Quevedo, F., Duality symmetries from nonabelian isometries in string theory, Nucl. Phys., B 403, 377, (1993) · Zbl 1030.81513
[15] Dabholkar, A.; Hull, C., Generalised T-duality and non-geometric backgrounds, JHEP, 05, 009, (2006)
[16] Hull, CM, Global aspects of T-duality, gauged σ-models and T-folds, JHEP, 10, 057, (2007)
[17] Evans, M.; Giannakis, I., T duality in arbitrary string backgrounds, Nucl. Phys., B 472, 139, (1996) · Zbl 1003.81542
[18] Davidović, L.; Sazdović, B., T-duality in a weakly curved background, Eur. Phys. J., C 74, 2683, (2014) · Zbl 1317.81218
[19] Giveon, A.; Roček, M., On non-abelian duality, Nucl. Phys., B 421, 173, (1994) · Zbl 0990.81690
[20] Davidović, L.; Nikolić, B.; Sazdović, B., Canonical approach to the closed string non-commutativity, Eur. Phys. J., C 74, 2734, (2014) · Zbl 1317.81218
[21] Lüst, D., T-duality and closed string non-commutative (doubled) geometry, JHEP, 12, 084, (2010) · Zbl 1294.81255
[22] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., (non-)commutative closed string on T-dual toroidal backgrounds, JHEP, 06, 021, (2013) · Zbl 1342.81630
[23] Andriot, D.; Hohm, O.; Larfors, M.; Lüst, D.; Patalong, P., A geometric action for non-geometric fluxes, Phys. Rev. Lett., 108, 261602, (2012)
[24] Blumenhagen, R.; Deser, A.; Lüst, D.; Plauschinn, E.; Rennecke, F., Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys., A 44, 385401, (2011) · Zbl 1229.81220
[25] Condeescu, C.; Florakis, I.; Lüst, D., Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP, 04, 121, (2012) · Zbl 1348.81362
[26] Lj. Davidović, B. Nikolić and B. Sazdović, T-duality diagram for a weakly curved background, arXiv:1406.5364 [INSPIRE].
[27] Cornalba, L.; Schiappa, R., Nonassociative star product deformations for D-brane world volumes in curved backgrounds, Commun. Math. Phys., 225, 33, (2002) · Zbl 1042.81065
[28] Alvarez, O., Pseudoduality in σ-models, Nucl. Phys., B 638, 328, (2002) · Zbl 0997.81051
[29] Duff, MJ, Duality rotations in string theory, Nucl. Phys., B 335, 610, (1990) · Zbl 0967.81519
[30] B. Sazdović, T-duality as coordinates permutation in double space, arXiv:1501.01024 [INSPIRE]. · Zbl 1388.81425
[31] Sazdović, B., T-duality as coordinates permutation in double space for weakly curved background, JHEP, 08, 055, (2015) · Zbl 1388.81425
[32] B. Nikolić and B. Sazdović, T-dualization of type-II superstring theory in double space, arXiv:1505.06044 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.